Sina A. Beer, Molly Went, Charlie Mills, Codie Wood, Amit Sud, James M. Allan, Richard Houlston, Martin F. Kaiser
{"title":"通过免疫细胞表型的孟德尔随机化发现治疗 B 细胞恶性肿瘤的潜在药物靶点","authors":"Sina A. Beer, Molly Went, Charlie Mills, Codie Wood, Amit Sud, James M. Allan, Richard Houlston, Martin F. Kaiser","doi":"10.1038/s41408-025-01277-x","DOIUrl":null,"url":null,"abstract":"<p>Although treatment options for B-cell malignancies have expanded, many patients continue to face limited response rates, highlighting an urgent need for new therapeutic targets. To prioritize candidate drug targets for B-cell malignancies, we employed Mendelian Randomization to estimate potentially causal relationships between 445 immune cell traits and six B-cell cancers: follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL), marginal zone lymphoma (MZL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), totaling 22,922 cases and 394,204 controls. 163 traits showed a suggestive association with at least one B-cell malignancy (<i>P</i> < 0.05), with 34 traits being significant after correction for multiple testing (<i>P</i> < 2 × 10<sup>−4</sup>). By integrating findings with observational data and clinical trial evidence to support drug target candidacy, 24 cell surface markers were identified as druggable targets. In addition to established therapeutic targets such as CD3, CD20 and CD38, our analysis highlights BAFF-R and CD39 in HL, CD25 in MM, CD27 in CLL, CD80/86 in DLBCL, and CCR2 in FL and MZL as promising candidates for therapeutic inhibition. Our findings provide further support for the potential of human genetics to guide the identification of drug targets and address a productivity-limiting step.</p>","PeriodicalId":8989,"journal":{"name":"Blood Cancer Journal","volume":"59 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mendelian randomization of immune cell phenotypes to discover potential drug targets for B-cell malignancy\",\"authors\":\"Sina A. Beer, Molly Went, Charlie Mills, Codie Wood, Amit Sud, James M. Allan, Richard Houlston, Martin F. Kaiser\",\"doi\":\"10.1038/s41408-025-01277-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although treatment options for B-cell malignancies have expanded, many patients continue to face limited response rates, highlighting an urgent need for new therapeutic targets. To prioritize candidate drug targets for B-cell malignancies, we employed Mendelian Randomization to estimate potentially causal relationships between 445 immune cell traits and six B-cell cancers: follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL), marginal zone lymphoma (MZL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), totaling 22,922 cases and 394,204 controls. 163 traits showed a suggestive association with at least one B-cell malignancy (<i>P</i> < 0.05), with 34 traits being significant after correction for multiple testing (<i>P</i> < 2 × 10<sup>−4</sup>). By integrating findings with observational data and clinical trial evidence to support drug target candidacy, 24 cell surface markers were identified as druggable targets. In addition to established therapeutic targets such as CD3, CD20 and CD38, our analysis highlights BAFF-R and CD39 in HL, CD25 in MM, CD27 in CLL, CD80/86 in DLBCL, and CCR2 in FL and MZL as promising candidates for therapeutic inhibition. Our findings provide further support for the potential of human genetics to guide the identification of drug targets and address a productivity-limiting step.</p>\",\"PeriodicalId\":8989,\"journal\":{\"name\":\"Blood Cancer Journal\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Cancer Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41408-025-01277-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41408-025-01277-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Mendelian randomization of immune cell phenotypes to discover potential drug targets for B-cell malignancy
Although treatment options for B-cell malignancies have expanded, many patients continue to face limited response rates, highlighting an urgent need for new therapeutic targets. To prioritize candidate drug targets for B-cell malignancies, we employed Mendelian Randomization to estimate potentially causal relationships between 445 immune cell traits and six B-cell cancers: follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL), marginal zone lymphoma (MZL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), totaling 22,922 cases and 394,204 controls. 163 traits showed a suggestive association with at least one B-cell malignancy (P < 0.05), with 34 traits being significant after correction for multiple testing (P < 2 × 10−4). By integrating findings with observational data and clinical trial evidence to support drug target candidacy, 24 cell surface markers were identified as druggable targets. In addition to established therapeutic targets such as CD3, CD20 and CD38, our analysis highlights BAFF-R and CD39 in HL, CD25 in MM, CD27 in CLL, CD80/86 in DLBCL, and CCR2 in FL and MZL as promising candidates for therapeutic inhibition. Our findings provide further support for the potential of human genetics to guide the identification of drug targets and address a productivity-limiting step.
期刊介绍:
Blood Cancer Journal is dedicated to publishing high-quality articles related to hematologic malignancies and related disorders. The journal welcomes submissions of original research, reviews, guidelines, and letters that are deemed to have a significant impact in the field. While the journal covers a wide range of topics, it particularly focuses on areas such as:
Preclinical studies of new compounds, especially those that provide mechanistic insights
Clinical trials and observations
Reviews related to new drugs and current management of hematologic malignancies
Novel observations related to new mutations, molecular pathways, and tumor genomics
Blood Cancer Journal offers a forum for expedited publication of novel observations regarding new mutations or altered pathways.