QuickProt:用于基于 DIA 和 PRM 质谱的蛋白质组学数据集的生物信息学和可视化工具。

Omar Arias-Gaguancela, Carmen Palii, Mehar Un Nissa, Marjorie Brand, Jeff Ranish
{"title":"QuickProt:用于基于 DIA 和 PRM 质谱的蛋白质组学数据集的生物信息学和可视化工具。","authors":"Omar Arias-Gaguancela, Carmen Palii, Mehar Un Nissa, Marjorie Brand, Jeff Ranish","doi":"10.1101/2025.03.24.645047","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry (MS)-based proteomics focuses on identifying and quantifying peptides and proteins in biological samples. Processing of MS-derived raw data, including deconvolution, alignment, and peptide-protein prediction, has been achieved through various software platforms. However, the downstream analysis, including quality control, visualizations, and interpretation of proteomics results remains challenging due to the lack of integrated tools to facilitate the analyses. To address this challenge, we developed QuickProt, a series of Python-based Google Colab notebooks for analyzing data-independent acquisition (DIA) and parallel reaction monitoring (PRM) proteomics datasets. These pipelines are designed so that users with no coding expertise can utilize the tool. Furthermore, as open-source code, QuickProt notebooks can be customized and incorporated into existing workflows. As proof of concept, we applied QuickProt to analyze in-house DIA and stable isotope dilution (SID)-PRM MS proteomics datasets from a time-course study of human erythropoiesis. The analysis resulted in annotated tables and publication-ready figures revealing a dynamic rearrangement of the proteome during erythroid differentiation, with the abundance of proteins linked to gene regulation, metabolic, and chromatin remodeling pathways increasing early in erythropoiesis. Altogether, these tools aim to automate and streamline DIA and PRM-MS proteomics data analysis, making it more efficient and less time-consuming.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974799/pdf/","citationCount":"0","resultStr":"{\"title\":\"QuickProt: A bioinformatics and visualization tool for DIA and PRM mass spectrometry-based proteomics datasets.\",\"authors\":\"Omar Arias-Gaguancela, Carmen Palii, Mehar Un Nissa, Marjorie Brand, Jeff Ranish\",\"doi\":\"10.1101/2025.03.24.645047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass spectrometry (MS)-based proteomics focuses on identifying and quantifying peptides and proteins in biological samples. Processing of MS-derived raw data, including deconvolution, alignment, and peptide-protein prediction, has been achieved through various software platforms. However, the downstream analysis, including quality control, visualizations, and interpretation of proteomics results remains challenging due to the lack of integrated tools to facilitate the analyses. To address this challenge, we developed QuickProt, a series of Python-based Google Colab notebooks for analyzing data-independent acquisition (DIA) and parallel reaction monitoring (PRM) proteomics datasets. These pipelines are designed so that users with no coding expertise can utilize the tool. Furthermore, as open-source code, QuickProt notebooks can be customized and incorporated into existing workflows. As proof of concept, we applied QuickProt to analyze in-house DIA and stable isotope dilution (SID)-PRM MS proteomics datasets from a time-course study of human erythropoiesis. The analysis resulted in annotated tables and publication-ready figures revealing a dynamic rearrangement of the proteome during erythroid differentiation, with the abundance of proteins linked to gene regulation, metabolic, and chromatin remodeling pathways increasing early in erythropoiesis. Altogether, these tools aim to automate and streamline DIA and PRM-MS proteomics data analysis, making it more efficient and less time-consuming.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974799/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.03.24.645047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.24.645047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于质谱(MS)的蛋白质组学侧重于鉴定和定量生物样品中的肽和蛋白质。ms衍生的原始数据的处理,包括反褶积、比对和肽-蛋白预测,已经通过各种软件平台实现。然而,下游分析,包括质量控制、可视化和蛋白质组学结果的解释,由于缺乏集成的工具来促进分析,仍然具有挑战性。为了应对这一挑战,我们开发了QuickProt,这是一系列基于python的谷歌Colab笔记本电脑,用于分析数据独立采集(DIA)和并行反应监测(PRM)蛋白质组学数据集。这些管道的设计使得没有编码专业知识的用户也可以使用该工具。此外,作为开源代码,QuickProt笔记本可以定制并合并到现有的工作流程中。作为概念验证,我们应用QuickProt分析了来自人类红细胞生成时间过程研究的内部DIA和稳定同位素稀释(SID)-PRM MS蛋白质组学数据集。分析结果显示,在红细胞分化过程中,蛋白质组发生了动态重排,与基因调控、代谢和染色质重塑途径相关的蛋白质丰度在红细胞生成早期增加。总之,这些工具旨在自动化和简化DIA和PRM-MS蛋白质组学数据分析,使其更高效,更省时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QuickProt: A bioinformatics and visualization tool for DIA and PRM mass spectrometry-based proteomics datasets.

Mass spectrometry (MS)-based proteomics focuses on identifying and quantifying peptides and proteins in biological samples. Processing of MS-derived raw data, including deconvolution, alignment, and peptide-protein prediction, has been achieved through various software platforms. However, the downstream analysis, including quality control, visualizations, and interpretation of proteomics results remains challenging due to the lack of integrated tools to facilitate the analyses. To address this challenge, we developed QuickProt, a series of Python-based Google Colab notebooks for analyzing data-independent acquisition (DIA) and parallel reaction monitoring (PRM) proteomics datasets. These pipelines are designed so that users with no coding expertise can utilize the tool. Furthermore, as open-source code, QuickProt notebooks can be customized and incorporated into existing workflows. As proof of concept, we applied QuickProt to analyze in-house DIA and stable isotope dilution (SID)-PRM MS proteomics datasets from a time-course study of human erythropoiesis. The analysis resulted in annotated tables and publication-ready figures revealing a dynamic rearrangement of the proteome during erythroid differentiation, with the abundance of proteins linked to gene regulation, metabolic, and chromatin remodeling pathways increasing early in erythropoiesis. Altogether, these tools aim to automate and streamline DIA and PRM-MS proteomics data analysis, making it more efficient and less time-consuming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信