{"title":"心理测量学Likert量表大数据分析中成分数据方法的分解:关于双样本t检验应用于重尾大数据的统计效力的丧失","authors":"René Lehmann, Bodo Vogt","doi":"10.1186/s40708-025-00253-2","DOIUrl":null,"url":null,"abstract":"<p><p>Bipolar psychometric scale data play a crucial role in psychological healthcare and health economics, such as in psychotherapeutic profiling and setting standards. Creating an accurate psychological profile not only benefits the patient but also saves time and costs. The quality of psychotherapeutic measures directly impacts grant funding decisions, influencing managerial choices. Moreover, the accuracy of consumer data analyses affects costs, profits, and the long-term sustainability of decisions. Considering psychometric bipolar scale data as compositional data can enhance the statistical power of well-known paired and unpaired two-sample t-tests, supporting managerial decision-making and the development or implementation of health interventions. This increase in statistical power is observed when the central limit theorem (CLT) holds true in statistics. Through stochastic simulation, this study explores the impact of violating the CLT on statistical power of the unpaired t-test under heavy-tailed data generating processes (DGPs) with finite variance. The findings reveal a reduction in statistical power based on specific parameters like the psychometric limit of quantification, the number of items in a questionnaire, the response scale used, and the dispersion of the DGP.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakdown of the compositional data approach in psychometric Likert scale big data analysis: about the loss of statistical power of two-sample t-tests applied to heavy-tailed big data.\",\"authors\":\"René Lehmann, Bodo Vogt\",\"doi\":\"10.1186/s40708-025-00253-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bipolar psychometric scale data play a crucial role in psychological healthcare and health economics, such as in psychotherapeutic profiling and setting standards. Creating an accurate psychological profile not only benefits the patient but also saves time and costs. The quality of psychotherapeutic measures directly impacts grant funding decisions, influencing managerial choices. Moreover, the accuracy of consumer data analyses affects costs, profits, and the long-term sustainability of decisions. Considering psychometric bipolar scale data as compositional data can enhance the statistical power of well-known paired and unpaired two-sample t-tests, supporting managerial decision-making and the development or implementation of health interventions. This increase in statistical power is observed when the central limit theorem (CLT) holds true in statistics. Through stochastic simulation, this study explores the impact of violating the CLT on statistical power of the unpaired t-test under heavy-tailed data generating processes (DGPs) with finite variance. The findings reveal a reduction in statistical power based on specific parameters like the psychometric limit of quantification, the number of items in a questionnaire, the response scale used, and the dispersion of the DGP.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"12 1\",\"pages\":\"9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-025-00253-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00253-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Breakdown of the compositional data approach in psychometric Likert scale big data analysis: about the loss of statistical power of two-sample t-tests applied to heavy-tailed big data.
Bipolar psychometric scale data play a crucial role in psychological healthcare and health economics, such as in psychotherapeutic profiling and setting standards. Creating an accurate psychological profile not only benefits the patient but also saves time and costs. The quality of psychotherapeutic measures directly impacts grant funding decisions, influencing managerial choices. Moreover, the accuracy of consumer data analyses affects costs, profits, and the long-term sustainability of decisions. Considering psychometric bipolar scale data as compositional data can enhance the statistical power of well-known paired and unpaired two-sample t-tests, supporting managerial decision-making and the development or implementation of health interventions. This increase in statistical power is observed when the central limit theorem (CLT) holds true in statistics. Through stochastic simulation, this study explores the impact of violating the CLT on statistical power of the unpaired t-test under heavy-tailed data generating processes (DGPs) with finite variance. The findings reveal a reduction in statistical power based on specific parameters like the psychometric limit of quantification, the number of items in a questionnaire, the response scale used, and the dispersion of the DGP.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing