Peng Li, Yang Yang, Chunpeng Luan, Wenbin Wang, Yuan Jiang, Zhenhao Zhao, Bo Wang, Yuting Zhao, Yunlong Bai, Man Liu, Zhongfang Zhao, Lei Zhang, Yuyang Qian, Jiandang Shi
{"title":"hotair相关的超级增强子通过MEST协调胶质母细胞瘤恶性。","authors":"Peng Li, Yang Yang, Chunpeng Luan, Wenbin Wang, Yuan Jiang, Zhenhao Zhao, Bo Wang, Yuting Zhao, Yunlong Bai, Man Liu, Zhongfang Zhao, Lei Zhang, Yuyang Qian, Jiandang Shi","doi":"10.1038/s41389-025-00551-8","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is one of the most malignant primary brain tumors, and factors governing its progression are not fully characterized. Recent research suggests that the long non-coding RNA (lncRNA) HOTAIR and super-enhancers (SEs) contribute significantly to GBM progression. Here, we performed TCGA data analysis revealing that high HOTAIR expression in GBM is associated with poor prognosis. Conversely, HOTAIR knock-down (KD) decreased proliferation, colony formation, and invasion of GBM cells. Furthermore, RNA-seq analysis identified DEGs in GBM cells related to cell growth and adhesion. Using an integrated approach, we also identify MEST as a HOTAIR-associated SE target gene. Intriguingly, MEST suppression in GBM cells phenocopied HOTAIR KD, as evidenced by reduced cell proliferation and invasion, whereas MEST overexpression counteracted effects of HOTAIR depletion. Moreover, 3 C technique-based PCR confirmed reduced interaction between HOTAIR-associated SEs and target genes after HOTAIR KD. This study reveals a novel regulatory mechanism governing GBM, offering promising directions for clinical interventions.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"14 1","pages":"8"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A HOTAIR-associated super-enhancer orchestrates glioblastoma malignancy via MEST.\",\"authors\":\"Peng Li, Yang Yang, Chunpeng Luan, Wenbin Wang, Yuan Jiang, Zhenhao Zhao, Bo Wang, Yuting Zhao, Yunlong Bai, Man Liu, Zhongfang Zhao, Lei Zhang, Yuyang Qian, Jiandang Shi\",\"doi\":\"10.1038/s41389-025-00551-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) is one of the most malignant primary brain tumors, and factors governing its progression are not fully characterized. Recent research suggests that the long non-coding RNA (lncRNA) HOTAIR and super-enhancers (SEs) contribute significantly to GBM progression. Here, we performed TCGA data analysis revealing that high HOTAIR expression in GBM is associated with poor prognosis. Conversely, HOTAIR knock-down (KD) decreased proliferation, colony formation, and invasion of GBM cells. Furthermore, RNA-seq analysis identified DEGs in GBM cells related to cell growth and adhesion. Using an integrated approach, we also identify MEST as a HOTAIR-associated SE target gene. Intriguingly, MEST suppression in GBM cells phenocopied HOTAIR KD, as evidenced by reduced cell proliferation and invasion, whereas MEST overexpression counteracted effects of HOTAIR depletion. Moreover, 3 C technique-based PCR confirmed reduced interaction between HOTAIR-associated SEs and target genes after HOTAIR KD. This study reveals a novel regulatory mechanism governing GBM, offering promising directions for clinical interventions.</p>\",\"PeriodicalId\":19489,\"journal\":{\"name\":\"Oncogenesis\",\"volume\":\"14 1\",\"pages\":\"8\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41389-025-00551-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-025-00551-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
A HOTAIR-associated super-enhancer orchestrates glioblastoma malignancy via MEST.
Glioblastoma (GBM) is one of the most malignant primary brain tumors, and factors governing its progression are not fully characterized. Recent research suggests that the long non-coding RNA (lncRNA) HOTAIR and super-enhancers (SEs) contribute significantly to GBM progression. Here, we performed TCGA data analysis revealing that high HOTAIR expression in GBM is associated with poor prognosis. Conversely, HOTAIR knock-down (KD) decreased proliferation, colony formation, and invasion of GBM cells. Furthermore, RNA-seq analysis identified DEGs in GBM cells related to cell growth and adhesion. Using an integrated approach, we also identify MEST as a HOTAIR-associated SE target gene. Intriguingly, MEST suppression in GBM cells phenocopied HOTAIR KD, as evidenced by reduced cell proliferation and invasion, whereas MEST overexpression counteracted effects of HOTAIR depletion. Moreover, 3 C technique-based PCR confirmed reduced interaction between HOTAIR-associated SEs and target genes after HOTAIR KD. This study reveals a novel regulatory mechanism governing GBM, offering promising directions for clinical interventions.
期刊介绍:
Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.