在开口端具有局部非线性损耗的拉曼单簧管的振荡阈值。

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Nathan Szwarcberg, Tom Colinot, Christophe Vergez, Michaël Jousserand
{"title":"在开口端具有局部非线性损耗的拉曼单簧管的振荡阈值。","authors":"Nathan Szwarcberg, Tom Colinot, Christophe Vergez, Michaël Jousserand","doi":"10.1121/10.0036391","DOIUrl":null,"url":null,"abstract":"<p><p>Localized nonlinear losses are taken into account in a simple Raman clarinet model. The complete system is expressed as an iterated map, enabling us to study the stability of the different playing regimes. A parametric study is carried out with respect to three major parameters: blowing pressure, embouchure, and nonlinear losses coefficient. The model exhibits the well-known effect of reducing the maximum blowing pressure until the oscillations stop (extinction threshold) when nonlinear losses increase. Furthermore, the stability analysis also shows that increasing nonlinear losses increases the minimal blowing pressure for which the oscillations start (oscillation threshold).</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 4","pages":"2615-2623"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation threshold of a Raman clarinet with localized nonlinear losses at the open end.\",\"authors\":\"Nathan Szwarcberg, Tom Colinot, Christophe Vergez, Michaël Jousserand\",\"doi\":\"10.1121/10.0036391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Localized nonlinear losses are taken into account in a simple Raman clarinet model. The complete system is expressed as an iterated map, enabling us to study the stability of the different playing regimes. A parametric study is carried out with respect to three major parameters: blowing pressure, embouchure, and nonlinear losses coefficient. The model exhibits the well-known effect of reducing the maximum blowing pressure until the oscillations stop (extinction threshold) when nonlinear losses increase. Furthermore, the stability analysis also shows that increasing nonlinear losses increases the minimal blowing pressure for which the oscillations start (oscillation threshold).</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"157 4\",\"pages\":\"2615-2623\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0036391\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0036391","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在一个简单的拉曼单簧管模型中考虑了局部非线性损失。完整的系统被表示为一个迭代地图,使我们能够研究不同游戏机制的稳定性。对三个主要参数:吹气压力、喷口和非线性损失系数进行了参数化研究。当非线性损失增加时,该模型显示出众所周知的减小最大吹气压力直至振荡停止(消光阈值)的效果。此外,稳定性分析还表明,非线性损失的增加增加了振荡开始的最小吹气压力(振荡阈值)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillation threshold of a Raman clarinet with localized nonlinear losses at the open end.

Localized nonlinear losses are taken into account in a simple Raman clarinet model. The complete system is expressed as an iterated map, enabling us to study the stability of the different playing regimes. A parametric study is carried out with respect to three major parameters: blowing pressure, embouchure, and nonlinear losses coefficient. The model exhibits the well-known effect of reducing the maximum blowing pressure until the oscillations stop (extinction threshold) when nonlinear losses increase. Furthermore, the stability analysis also shows that increasing nonlinear losses increases the minimal blowing pressure for which the oscillations start (oscillation threshold).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信