Nathan Szwarcberg, Tom Colinot, Christophe Vergez, Michaël Jousserand
{"title":"在开口端具有局部非线性损耗的拉曼单簧管的振荡阈值。","authors":"Nathan Szwarcberg, Tom Colinot, Christophe Vergez, Michaël Jousserand","doi":"10.1121/10.0036391","DOIUrl":null,"url":null,"abstract":"<p><p>Localized nonlinear losses are taken into account in a simple Raman clarinet model. The complete system is expressed as an iterated map, enabling us to study the stability of the different playing regimes. A parametric study is carried out with respect to three major parameters: blowing pressure, embouchure, and nonlinear losses coefficient. The model exhibits the well-known effect of reducing the maximum blowing pressure until the oscillations stop (extinction threshold) when nonlinear losses increase. Furthermore, the stability analysis also shows that increasing nonlinear losses increases the minimal blowing pressure for which the oscillations start (oscillation threshold).</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 4","pages":"2615-2623"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation threshold of a Raman clarinet with localized nonlinear losses at the open end.\",\"authors\":\"Nathan Szwarcberg, Tom Colinot, Christophe Vergez, Michaël Jousserand\",\"doi\":\"10.1121/10.0036391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Localized nonlinear losses are taken into account in a simple Raman clarinet model. The complete system is expressed as an iterated map, enabling us to study the stability of the different playing regimes. A parametric study is carried out with respect to three major parameters: blowing pressure, embouchure, and nonlinear losses coefficient. The model exhibits the well-known effect of reducing the maximum blowing pressure until the oscillations stop (extinction threshold) when nonlinear losses increase. Furthermore, the stability analysis also shows that increasing nonlinear losses increases the minimal blowing pressure for which the oscillations start (oscillation threshold).</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"157 4\",\"pages\":\"2615-2623\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0036391\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0036391","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Oscillation threshold of a Raman clarinet with localized nonlinear losses at the open end.
Localized nonlinear losses are taken into account in a simple Raman clarinet model. The complete system is expressed as an iterated map, enabling us to study the stability of the different playing regimes. A parametric study is carried out with respect to three major parameters: blowing pressure, embouchure, and nonlinear losses coefficient. The model exhibits the well-known effect of reducing the maximum blowing pressure until the oscillations stop (extinction threshold) when nonlinear losses increase. Furthermore, the stability analysis also shows that increasing nonlinear losses increases the minimal blowing pressure for which the oscillations start (oscillation threshold).
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.