用于疾病分类和定位的分层原型的渐进挖掘和动态提炼。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chong Wang, Fengbei Liu, Yuanhong Chen, Chun Fung Kwok, Michael Elliott, Carlos Pena-Solorzano, Davis James McCarthy, Helen Frazer, Gustavo Carneiro
{"title":"用于疾病分类和定位的分层原型的渐进挖掘和动态提炼。","authors":"Chong Wang, Fengbei Liu, Yuanhong Chen, Chun Fung Kwok, Michael Elliott, Carlos Pena-Solorzano, Davis James McCarthy, Helen Frazer, Gustavo Carneiro","doi":"10.1109/JBHI.2025.3558508","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing effective representation of lesions is essential for disease classification and localization in medical image analysis. Prototype-based models address this by leveraging visual prototypes to capture representative lesion patterns, yet effectively handling the complexity of diverse lesion characteristics remains a critical challenge, as they typically rely on single-level, fixedsize prototypes and suffer from prototype redundancy. In this paper, we present HierProtoPNet, a new prototypebased framework designed to handle the complexity of lesions in medical images. HierProtoPNet leverages hierarchical visual prototypes across different semantic feature granularities to effectively capture diverse lesion patterns. To prevent redundancy and increase utility of the prototypes, we devise a novel prototype mining paradigm to progressively discover semantically distinct prototypes, offering multi-level complementary analysis of lesions. Also, we introduce a dynamic knowledge distillation strategy that allows transferring essential classification information across hierarchical levels, thereby improving generalisation performance. Comprehensive experiments show that HierProtoPNet achieves state-of-the-art classification performances in three benchmarks: binary breast cancer screening, multi-class retinal disease diagnosis, and multilabel chest X-ray classification. Quantitative assessments also illustrate HierProtoPNet's significant advantages in weakly-supervised disease localisation and segmentation.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Mining and Dynamic Distillation of Hierarchical Prototypes for Disease Classification and Localisation.\",\"authors\":\"Chong Wang, Fengbei Liu, Yuanhong Chen, Chun Fung Kwok, Michael Elliott, Carlos Pena-Solorzano, Davis James McCarthy, Helen Frazer, Gustavo Carneiro\",\"doi\":\"10.1109/JBHI.2025.3558508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Constructing effective representation of lesions is essential for disease classification and localization in medical image analysis. Prototype-based models address this by leveraging visual prototypes to capture representative lesion patterns, yet effectively handling the complexity of diverse lesion characteristics remains a critical challenge, as they typically rely on single-level, fixedsize prototypes and suffer from prototype redundancy. In this paper, we present HierProtoPNet, a new prototypebased framework designed to handle the complexity of lesions in medical images. HierProtoPNet leverages hierarchical visual prototypes across different semantic feature granularities to effectively capture diverse lesion patterns. To prevent redundancy and increase utility of the prototypes, we devise a novel prototype mining paradigm to progressively discover semantically distinct prototypes, offering multi-level complementary analysis of lesions. Also, we introduce a dynamic knowledge distillation strategy that allows transferring essential classification information across hierarchical levels, thereby improving generalisation performance. Comprehensive experiments show that HierProtoPNet achieves state-of-the-art classification performances in three benchmarks: binary breast cancer screening, multi-class retinal disease diagnosis, and multilabel chest X-ray classification. Quantitative assessments also illustrate HierProtoPNet's significant advantages in weakly-supervised disease localisation and segmentation.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3558508\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3558508","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

构建有效的病灶表示是医学图像分析中疾病分类和定位的关键。基于原型的模型通过利用视觉原型来捕获具有代表性的病变模式来解决这个问题,但是有效地处理不同病变特征的复杂性仍然是一个关键的挑战,因为它们通常依赖于单一级别、固定大小的原型,并且受到原型冗余的影响。在本文中,我们提出了一种新的基于原型的框架HierProtoPNet,用于处理医学图像中病变的复杂性。HierProtoPNet利用跨不同语义特征粒度的分层视觉原型来有效捕获不同的病变模式。为了防止冗余和提高原型的效用,我们设计了一种新的原型挖掘范式,以逐步发现语义上不同的原型,提供多层次的互补分析。此外,我们还引入了一种动态知识蒸馏策略,该策略允许跨层次传递基本分类信息,从而提高泛化性能。综合实验表明,HierProtoPNet在乳腺癌二元筛查、多类别视网膜疾病诊断和多标签胸部x线分类三个基准上达到了最先进的分类性能。定量评估也说明了HierProtoPNet在弱监督疾病定位和分割方面的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progressive Mining and Dynamic Distillation of Hierarchical Prototypes for Disease Classification and Localisation.

Constructing effective representation of lesions is essential for disease classification and localization in medical image analysis. Prototype-based models address this by leveraging visual prototypes to capture representative lesion patterns, yet effectively handling the complexity of diverse lesion characteristics remains a critical challenge, as they typically rely on single-level, fixedsize prototypes and suffer from prototype redundancy. In this paper, we present HierProtoPNet, a new prototypebased framework designed to handle the complexity of lesions in medical images. HierProtoPNet leverages hierarchical visual prototypes across different semantic feature granularities to effectively capture diverse lesion patterns. To prevent redundancy and increase utility of the prototypes, we devise a novel prototype mining paradigm to progressively discover semantically distinct prototypes, offering multi-level complementary analysis of lesions. Also, we introduce a dynamic knowledge distillation strategy that allows transferring essential classification information across hierarchical levels, thereby improving generalisation performance. Comprehensive experiments show that HierProtoPNet achieves state-of-the-art classification performances in three benchmarks: binary breast cancer screening, multi-class retinal disease diagnosis, and multilabel chest X-ray classification. Quantitative assessments also illustrate HierProtoPNet's significant advantages in weakly-supervised disease localisation and segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信