Chong Wang, Fengbei Liu, Yuanhong Chen, Chun Fung Kwok, Michael Elliott, Carlos Pena-Solorzano, Davis James McCarthy, Helen Frazer, Gustavo Carneiro
{"title":"用于疾病分类和定位的分层原型的渐进挖掘和动态提炼。","authors":"Chong Wang, Fengbei Liu, Yuanhong Chen, Chun Fung Kwok, Michael Elliott, Carlos Pena-Solorzano, Davis James McCarthy, Helen Frazer, Gustavo Carneiro","doi":"10.1109/JBHI.2025.3558508","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing effective representation of lesions is essential for disease classification and localization in medical image analysis. Prototype-based models address this by leveraging visual prototypes to capture representative lesion patterns, yet effectively handling the complexity of diverse lesion characteristics remains a critical challenge, as they typically rely on single-level, fixedsize prototypes and suffer from prototype redundancy. In this paper, we present HierProtoPNet, a new prototypebased framework designed to handle the complexity of lesions in medical images. HierProtoPNet leverages hierarchical visual prototypes across different semantic feature granularities to effectively capture diverse lesion patterns. To prevent redundancy and increase utility of the prototypes, we devise a novel prototype mining paradigm to progressively discover semantically distinct prototypes, offering multi-level complementary analysis of lesions. Also, we introduce a dynamic knowledge distillation strategy that allows transferring essential classification information across hierarchical levels, thereby improving generalisation performance. Comprehensive experiments show that HierProtoPNet achieves state-of-the-art classification performances in three benchmarks: binary breast cancer screening, multi-class retinal disease diagnosis, and multilabel chest X-ray classification. Quantitative assessments also illustrate HierProtoPNet's significant advantages in weakly-supervised disease localisation and segmentation.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Mining and Dynamic Distillation of Hierarchical Prototypes for Disease Classification and Localisation.\",\"authors\":\"Chong Wang, Fengbei Liu, Yuanhong Chen, Chun Fung Kwok, Michael Elliott, Carlos Pena-Solorzano, Davis James McCarthy, Helen Frazer, Gustavo Carneiro\",\"doi\":\"10.1109/JBHI.2025.3558508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Constructing effective representation of lesions is essential for disease classification and localization in medical image analysis. Prototype-based models address this by leveraging visual prototypes to capture representative lesion patterns, yet effectively handling the complexity of diverse lesion characteristics remains a critical challenge, as they typically rely on single-level, fixedsize prototypes and suffer from prototype redundancy. In this paper, we present HierProtoPNet, a new prototypebased framework designed to handle the complexity of lesions in medical images. HierProtoPNet leverages hierarchical visual prototypes across different semantic feature granularities to effectively capture diverse lesion patterns. To prevent redundancy and increase utility of the prototypes, we devise a novel prototype mining paradigm to progressively discover semantically distinct prototypes, offering multi-level complementary analysis of lesions. Also, we introduce a dynamic knowledge distillation strategy that allows transferring essential classification information across hierarchical levels, thereby improving generalisation performance. Comprehensive experiments show that HierProtoPNet achieves state-of-the-art classification performances in three benchmarks: binary breast cancer screening, multi-class retinal disease diagnosis, and multilabel chest X-ray classification. Quantitative assessments also illustrate HierProtoPNet's significant advantages in weakly-supervised disease localisation and segmentation.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3558508\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3558508","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Progressive Mining and Dynamic Distillation of Hierarchical Prototypes for Disease Classification and Localisation.
Constructing effective representation of lesions is essential for disease classification and localization in medical image analysis. Prototype-based models address this by leveraging visual prototypes to capture representative lesion patterns, yet effectively handling the complexity of diverse lesion characteristics remains a critical challenge, as they typically rely on single-level, fixedsize prototypes and suffer from prototype redundancy. In this paper, we present HierProtoPNet, a new prototypebased framework designed to handle the complexity of lesions in medical images. HierProtoPNet leverages hierarchical visual prototypes across different semantic feature granularities to effectively capture diverse lesion patterns. To prevent redundancy and increase utility of the prototypes, we devise a novel prototype mining paradigm to progressively discover semantically distinct prototypes, offering multi-level complementary analysis of lesions. Also, we introduce a dynamic knowledge distillation strategy that allows transferring essential classification information across hierarchical levels, thereby improving generalisation performance. Comprehensive experiments show that HierProtoPNet achieves state-of-the-art classification performances in three benchmarks: binary breast cancer screening, multi-class retinal disease diagnosis, and multilabel chest X-ray classification. Quantitative assessments also illustrate HierProtoPNet's significant advantages in weakly-supervised disease localisation and segmentation.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.