Chenyi Wang, Yingjun Shi, Da Zhang, Yupeng Sun, Junjie Xie, Bingchen Wu, Cuilin Zhang, Xiaolong Liu
{"title":"通过溶瘤病毒传递肽- mhc复合物的新抗原肿瘤疫苗推广。","authors":"Chenyi Wang, Yingjun Shi, Da Zhang, Yupeng Sun, Junjie Xie, Bingchen Wu, Cuilin Zhang, Xiaolong Liu","doi":"10.1038/s44321-025-00225-3","DOIUrl":null,"url":null,"abstract":"<p><p>Neoantigen vaccine is a promising breakthrough in tumor immunotherapy. However, the application of this highly personalized strategy in the treatment of solid tumors is hindered by several obstacles, including very costly and time-consuming preparation steps, uncertainty in prediction algorithms and tumor heterogeneity. Universalization of neoantigen vaccine is an ideal yet currently unattainable solution to such limitations. To overcome these limitations, we engineered oncolytic viruses co-expressing neoantigens and neoantigen-binding major histocompatibility complex (MHC) molecules to force ectopic delivery of peptide-MHC ligands to T cell receptors (TCRs), enabling specific targeting by neoantigen vaccine-primed host immunity. When integrated with neoantigen vaccination, the engineered viruses exhibited potent cytolytic activity in a variety of tumor models irrespective of the neoantigen expression profiles, eliciting robust systemic antitumor immunity to reject tumor rechallenge and inhibit abscopal tumor growth with a favorable safety profile. Thus, this study provides a powerful approach to enhance the universality and efficacy of neoantigen vaccines, meeting the urgent need for universal neoantigen vaccines in the clinic to facilitate the further development of tumor immunotherapy.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1118-1152"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081622/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generalization of neoantigen-based tumor vaccine by delivering peptide-MHC complex via oncolytic virus.\",\"authors\":\"Chenyi Wang, Yingjun Shi, Da Zhang, Yupeng Sun, Junjie Xie, Bingchen Wu, Cuilin Zhang, Xiaolong Liu\",\"doi\":\"10.1038/s44321-025-00225-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neoantigen vaccine is a promising breakthrough in tumor immunotherapy. However, the application of this highly personalized strategy in the treatment of solid tumors is hindered by several obstacles, including very costly and time-consuming preparation steps, uncertainty in prediction algorithms and tumor heterogeneity. Universalization of neoantigen vaccine is an ideal yet currently unattainable solution to such limitations. To overcome these limitations, we engineered oncolytic viruses co-expressing neoantigens and neoantigen-binding major histocompatibility complex (MHC) molecules to force ectopic delivery of peptide-MHC ligands to T cell receptors (TCRs), enabling specific targeting by neoantigen vaccine-primed host immunity. When integrated with neoantigen vaccination, the engineered viruses exhibited potent cytolytic activity in a variety of tumor models irrespective of the neoantigen expression profiles, eliciting robust systemic antitumor immunity to reject tumor rechallenge and inhibit abscopal tumor growth with a favorable safety profile. Thus, this study provides a powerful approach to enhance the universality and efficacy of neoantigen vaccines, meeting the urgent need for universal neoantigen vaccines in the clinic to facilitate the further development of tumor immunotherapy.</p>\",\"PeriodicalId\":11597,\"journal\":{\"name\":\"EMBO Molecular Medicine\",\"volume\":\" \",\"pages\":\"1118-1152\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081622/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s44321-025-00225-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00225-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Generalization of neoantigen-based tumor vaccine by delivering peptide-MHC complex via oncolytic virus.
Neoantigen vaccine is a promising breakthrough in tumor immunotherapy. However, the application of this highly personalized strategy in the treatment of solid tumors is hindered by several obstacles, including very costly and time-consuming preparation steps, uncertainty in prediction algorithms and tumor heterogeneity. Universalization of neoantigen vaccine is an ideal yet currently unattainable solution to such limitations. To overcome these limitations, we engineered oncolytic viruses co-expressing neoantigens and neoantigen-binding major histocompatibility complex (MHC) molecules to force ectopic delivery of peptide-MHC ligands to T cell receptors (TCRs), enabling specific targeting by neoantigen vaccine-primed host immunity. When integrated with neoantigen vaccination, the engineered viruses exhibited potent cytolytic activity in a variety of tumor models irrespective of the neoantigen expression profiles, eliciting robust systemic antitumor immunity to reject tumor rechallenge and inhibit abscopal tumor growth with a favorable safety profile. Thus, this study provides a powerful approach to enhance the universality and efficacy of neoantigen vaccines, meeting the urgent need for universal neoantigen vaccines in the clinic to facilitate the further development of tumor immunotherapy.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)