一维地图分岔点周围的幂律行为:一种超级轨迹方法。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0233615
J G Polli, A J Fidélis, M G E da Luz
{"title":"一维地图分岔点周围的幂律行为:一种超级轨迹方法。","authors":"J G Polli, A J Fidélis, M G E da Luz","doi":"10.1063/5.0233615","DOIUrl":null,"url":null,"abstract":"<p><p>The convergence toward asymptotic states at bifurcation points (BPs) r=rb of 1D mappings of a free parameter r presents scaling laws whose characteristic exponents in principle should depend on the maps non-linear features. Aiming to better understand such comportment, we investigated the logistic-like and sine-like family of maps by studying transcritical, pitchfork, period-doubling, and tangent BPs. For this, we employed the supertracks framework, where continuous functions of r are generated, having the 1D map critical point as the initial condition. Analyzing these functions we obtained, from numerical and analytical procedures, four exponents to describe the asymptotic behavior when r=rb as well as another exponent typifying the case of r>rb. Moreover, we confirmed the universality classes of transcritical and pitchfork BPs proposed in the literature and unveiled novel universality results for period-doubling and tangent BPs. Our findings highlighted the usefulness of the supertracks method, for instance, helping to uncover universality in dynamical systems and allowing to establish parallels with critical phenomena.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-law behavior around bifurcation points of 1D maps: A supertracks approach.\",\"authors\":\"J G Polli, A J Fidélis, M G E da Luz\",\"doi\":\"10.1063/5.0233615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The convergence toward asymptotic states at bifurcation points (BPs) r=rb of 1D mappings of a free parameter r presents scaling laws whose characteristic exponents in principle should depend on the maps non-linear features. Aiming to better understand such comportment, we investigated the logistic-like and sine-like family of maps by studying transcritical, pitchfork, period-doubling, and tangent BPs. For this, we employed the supertracks framework, where continuous functions of r are generated, having the 1D map critical point as the initial condition. Analyzing these functions we obtained, from numerical and analytical procedures, four exponents to describe the asymptotic behavior when r=rb as well as another exponent typifying the case of r>rb. Moreover, we confirmed the universality classes of transcritical and pitchfork BPs proposed in the literature and unveiled novel universality results for period-doubling and tangent BPs. Our findings highlighted the usefulness of the supertracks method, for instance, helping to uncover universality in dynamical systems and allowing to establish parallels with critical phenomena.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233615\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233615","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

自由参数r的一维映射在分岔点r=rb处的渐近状态收敛呈现出标度规律,其特征指数原则上应取决于映射的非线性特征。为了更好地理解这种行为,我们通过研究跨临界、干草叉、周期加倍和切线bp来研究类逻辑和类正弦映射族。为此,我们采用supertracks框架,生成r的连续函数,以1D映射临界点为初始条件。通过对这些函数的分析,我们得到了描述r=rb时的渐近行为的四个指数,以及表征r= b> rb情况的另一个指数。此外,我们证实了文献中提出的跨临界bp和干草叉bp的普遍性分类,并揭示了周期加倍bp和切线bp的新的普遍性结果。我们的发现突出了超级轨道方法的有用性,例如,它有助于揭示动力系统中的普遍性,并允许与关键现象建立相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-law behavior around bifurcation points of 1D maps: A supertracks approach.

The convergence toward asymptotic states at bifurcation points (BPs) r=rb of 1D mappings of a free parameter r presents scaling laws whose characteristic exponents in principle should depend on the maps non-linear features. Aiming to better understand such comportment, we investigated the logistic-like and sine-like family of maps by studying transcritical, pitchfork, period-doubling, and tangent BPs. For this, we employed the supertracks framework, where continuous functions of r are generated, having the 1D map critical point as the initial condition. Analyzing these functions we obtained, from numerical and analytical procedures, four exponents to describe the asymptotic behavior when r=rb as well as another exponent typifying the case of r>rb. Moreover, we confirmed the universality classes of transcritical and pitchfork BPs proposed in the literature and unveiled novel universality results for period-doubling and tangent BPs. Our findings highlighted the usefulness of the supertracks method, for instance, helping to uncover universality in dynamical systems and allowing to establish parallels with critical phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信