结构群体中连续公共产品博弈的进化动力学。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0262821
Jing Luo, Duozi Lin, Xiaojie Chen, Attila Szolnoki
{"title":"结构群体中连续公共产品博弈的进化动力学。","authors":"Jing Luo, Duozi Lin, Xiaojie Chen, Attila Szolnoki","doi":"10.1063/5.0262821","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few decades, many works have studied the evolutionary dynamics of continuous games. However, previous works have primarily focused on two-player games with pairwise interactions. Indeed, group interactions rather than pairwise interactions are usually found in real situations. The public goods game serves as a paradigm of multi-player interactions. Notably, various types of benefit functions are typically considered in public goods games, including linear, saturating, and sigmoid functions. Thus far, the evolutionary dynamics of cooperation in continuous public goods games with these benefit functions remain unknown in structured populations. In this paper, we consider the continuous public goods game in structured populations. By employing the pair approximation approach, we derive the analytical expressions for invasion fitness. Furthermore, we explore the adaptive dynamics of cooperative investments in the game with various benefit functions. First, for the linear public goods game, we find that there is no singular strategy, and the cooperative investments evolve to either the maximum or minimum depending on the benefit-to-cost ratio. Subsequently, we examine the game with saturating benefit functions and demonstrate the potential existence of an evolutionarily stable strategy (ESS). Additionally, for the game with the sigmoid benefit function, we observe that the evolutionary outcomes are closely related to the threshold value. When the threshold is small, a unique ESS emerges. For intermediate threshold values, both the ESS and repellor singular strategies can coexist. When the threshold value is large, a unique repellor displays. Finally, we perform individual-based simulations to validate our theoretical results.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary dynamics of continuous public goods games in structured populations.\",\"authors\":\"Jing Luo, Duozi Lin, Xiaojie Chen, Attila Szolnoki\",\"doi\":\"10.1063/5.0262821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past few decades, many works have studied the evolutionary dynamics of continuous games. However, previous works have primarily focused on two-player games with pairwise interactions. Indeed, group interactions rather than pairwise interactions are usually found in real situations. The public goods game serves as a paradigm of multi-player interactions. Notably, various types of benefit functions are typically considered in public goods games, including linear, saturating, and sigmoid functions. Thus far, the evolutionary dynamics of cooperation in continuous public goods games with these benefit functions remain unknown in structured populations. In this paper, we consider the continuous public goods game in structured populations. By employing the pair approximation approach, we derive the analytical expressions for invasion fitness. Furthermore, we explore the adaptive dynamics of cooperative investments in the game with various benefit functions. First, for the linear public goods game, we find that there is no singular strategy, and the cooperative investments evolve to either the maximum or minimum depending on the benefit-to-cost ratio. Subsequently, we examine the game with saturating benefit functions and demonstrate the potential existence of an evolutionarily stable strategy (ESS). Additionally, for the game with the sigmoid benefit function, we observe that the evolutionary outcomes are closely related to the threshold value. When the threshold is small, a unique ESS emerges. For intermediate threshold values, both the ESS and repellor singular strategies can coexist. When the threshold value is large, a unique repellor displays. Finally, we perform individual-based simulations to validate our theoretical results.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0262821\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0262821","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,许多作品都在研究连续游戏的进化动态。然而,之前的作品主要关注的是带有两两互动的双人游戏。事实上,在实际情况中,通常会发现群体互动而不是成对互动。公共产品游戏是多人互动的范例。值得注意的是,公共产品游戏通常会考虑各种类型的利益函数,包括线性、饱和和s型函数。到目前为止,在具有这些利益函数的连续公共产品博弈中,合作的进化动力学在结构群体中仍然是未知的。本文研究结构群体中的连续公共产品博弈问题。利用对逼近方法,导出了入侵适应度的解析表达式。此外,我们还探讨了在具有不同利益函数的博弈中合作投资的自适应动力学。首先,对于线性公共产品博弈,我们发现不存在单一策略,合作投资根据收益成本比向最大值或最小值演化。随后,我们研究了具有饱和收益函数的博弈,并证明了进化稳定策略(ESS)的潜在存在性。此外,对于具有s型利益函数的博弈,我们观察到进化结果与阈值密切相关。当阈值较小时,一个独特的ESS出现。对于中间阈值,ESS策略和排斥奇异策略可以共存。当阈值较大时,显示一个独特的驱避器。最后,我们进行了基于个体的模拟来验证我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary dynamics of continuous public goods games in structured populations.

Over the past few decades, many works have studied the evolutionary dynamics of continuous games. However, previous works have primarily focused on two-player games with pairwise interactions. Indeed, group interactions rather than pairwise interactions are usually found in real situations. The public goods game serves as a paradigm of multi-player interactions. Notably, various types of benefit functions are typically considered in public goods games, including linear, saturating, and sigmoid functions. Thus far, the evolutionary dynamics of cooperation in continuous public goods games with these benefit functions remain unknown in structured populations. In this paper, we consider the continuous public goods game in structured populations. By employing the pair approximation approach, we derive the analytical expressions for invasion fitness. Furthermore, we explore the adaptive dynamics of cooperative investments in the game with various benefit functions. First, for the linear public goods game, we find that there is no singular strategy, and the cooperative investments evolve to either the maximum or minimum depending on the benefit-to-cost ratio. Subsequently, we examine the game with saturating benefit functions and demonstrate the potential existence of an evolutionarily stable strategy (ESS). Additionally, for the game with the sigmoid benefit function, we observe that the evolutionary outcomes are closely related to the threshold value. When the threshold is small, a unique ESS emerges. For intermediate threshold values, both the ESS and repellor singular strategies can coexist. When the threshold value is large, a unique repellor displays. Finally, we perform individual-based simulations to validate our theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信