Haoyang Cheng, Zhuoran Liang, Yijin Wu, Jiamin Hu, Bijin Cao, Zekun Liu, Bo Liu, Han Cheng, Ze-Xian Liu
{"title":"从富含磷酸化蛋白组的癌症多组学数据集推断激酶-磷酸化调控。","authors":"Haoyang Cheng, Zhuoran Liang, Yijin Wu, Jiamin Hu, Bijin Cao, Zekun Liu, Bo Liu, Han Cheng, Ze-Xian Liu","doi":"10.1093/bib/bbaf143","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorylation in eukaryotic cells plays a key role in regulating cell signaling and disease progression. Despite the ability to detect thousands of phosphosites in a single experiment using high-throughput technologies, the kinases responsible for regulating these sites are largely unidentified. To solve this, we collected the quantitative data at the transcriptional, protein, and phosphorylation levels of 10 159 samples from 23 tumor datasets and 15 adjacent normal tissue datasets. Our analysis aimed to uncover the potential impact and linkage of kinase-phosphosite (KPS) pairs through experimental evidence in publications and prediction tools commonly used. We discovered that both experimentally validated and tool-predicted KPS pairs were enriched in groups where there is a significant correlation between kinase expression/phosphorylation level and the phosphorylation level of phosphosite. This suggested that a quantitative correlation could infer the KPS interconnections. Furthermore, the Spearman's correlation coefficient for these pairs were notably higher in tumor samples, indicating that these regulatory interactions are particularly pronounced in tumors. Consequently, building on the KPS correlations of different datasets as predictive features, we have developed an innovative approach that employed an oversampling method combined with and XGBoost algorithm (SMOTE-XGBoost) to predict potential kinase-specific phosphorylation sites in proteins. Moreover, the computed correlations and predictions of kinase-phosphosite interconnections were integrated into the eKPI database (https://ekpi.omicsbio.info/). In summary, our study could provide helpful information and facilitate further research on the regulatory relationship between kinases and phosphosites.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring kinase-phosphosite regulation from phosphoproteome-enriched cancer multi-omics datasets.\",\"authors\":\"Haoyang Cheng, Zhuoran Liang, Yijin Wu, Jiamin Hu, Bijin Cao, Zekun Liu, Bo Liu, Han Cheng, Ze-Xian Liu\",\"doi\":\"10.1093/bib/bbaf143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphorylation in eukaryotic cells plays a key role in regulating cell signaling and disease progression. Despite the ability to detect thousands of phosphosites in a single experiment using high-throughput technologies, the kinases responsible for regulating these sites are largely unidentified. To solve this, we collected the quantitative data at the transcriptional, protein, and phosphorylation levels of 10 159 samples from 23 tumor datasets and 15 adjacent normal tissue datasets. Our analysis aimed to uncover the potential impact and linkage of kinase-phosphosite (KPS) pairs through experimental evidence in publications and prediction tools commonly used. We discovered that both experimentally validated and tool-predicted KPS pairs were enriched in groups where there is a significant correlation between kinase expression/phosphorylation level and the phosphorylation level of phosphosite. This suggested that a quantitative correlation could infer the KPS interconnections. Furthermore, the Spearman's correlation coefficient for these pairs were notably higher in tumor samples, indicating that these regulatory interactions are particularly pronounced in tumors. Consequently, building on the KPS correlations of different datasets as predictive features, we have developed an innovative approach that employed an oversampling method combined with and XGBoost algorithm (SMOTE-XGBoost) to predict potential kinase-specific phosphorylation sites in proteins. Moreover, the computed correlations and predictions of kinase-phosphosite interconnections were integrated into the eKPI database (https://ekpi.omicsbio.info/). In summary, our study could provide helpful information and facilitate further research on the regulatory relationship between kinases and phosphosites.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf143\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf143","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Inferring kinase-phosphosite regulation from phosphoproteome-enriched cancer multi-omics datasets.
Phosphorylation in eukaryotic cells plays a key role in regulating cell signaling and disease progression. Despite the ability to detect thousands of phosphosites in a single experiment using high-throughput technologies, the kinases responsible for regulating these sites are largely unidentified. To solve this, we collected the quantitative data at the transcriptional, protein, and phosphorylation levels of 10 159 samples from 23 tumor datasets and 15 adjacent normal tissue datasets. Our analysis aimed to uncover the potential impact and linkage of kinase-phosphosite (KPS) pairs through experimental evidence in publications and prediction tools commonly used. We discovered that both experimentally validated and tool-predicted KPS pairs were enriched in groups where there is a significant correlation between kinase expression/phosphorylation level and the phosphorylation level of phosphosite. This suggested that a quantitative correlation could infer the KPS interconnections. Furthermore, the Spearman's correlation coefficient for these pairs were notably higher in tumor samples, indicating that these regulatory interactions are particularly pronounced in tumors. Consequently, building on the KPS correlations of different datasets as predictive features, we have developed an innovative approach that employed an oversampling method combined with and XGBoost algorithm (SMOTE-XGBoost) to predict potential kinase-specific phosphorylation sites in proteins. Moreover, the computed correlations and predictions of kinase-phosphosite interconnections were integrated into the eKPI database (https://ekpi.omicsbio.info/). In summary, our study could provide helpful information and facilitate further research on the regulatory relationship between kinases and phosphosites.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.