从富含磷酸化蛋白组的癌症多组学数据集推断激酶-磷酸化调控。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Haoyang Cheng, Zhuoran Liang, Yijin Wu, Jiamin Hu, Bijin Cao, Zekun Liu, Bo Liu, Han Cheng, Ze-Xian Liu
{"title":"从富含磷酸化蛋白组的癌症多组学数据集推断激酶-磷酸化调控。","authors":"Haoyang Cheng, Zhuoran Liang, Yijin Wu, Jiamin Hu, Bijin Cao, Zekun Liu, Bo Liu, Han Cheng, Ze-Xian Liu","doi":"10.1093/bib/bbaf143","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorylation in eukaryotic cells plays a key role in regulating cell signaling and disease progression. Despite the ability to detect thousands of phosphosites in a single experiment using high-throughput technologies, the kinases responsible for regulating these sites are largely unidentified. To solve this, we collected the quantitative data at the transcriptional, protein, and phosphorylation levels of 10 159 samples from 23 tumor datasets and 15 adjacent normal tissue datasets. Our analysis aimed to uncover the potential impact and linkage of kinase-phosphosite (KPS) pairs through experimental evidence in publications and prediction tools commonly used. We discovered that both experimentally validated and tool-predicted KPS pairs were enriched in groups where there is a significant correlation between kinase expression/phosphorylation level and the phosphorylation level of phosphosite. This suggested that a quantitative correlation could infer the KPS interconnections. Furthermore, the Spearman's correlation coefficient for these pairs were notably higher in tumor samples, indicating that these regulatory interactions are particularly pronounced in tumors. Consequently, building on the KPS correlations of different datasets as predictive features, we have developed an innovative approach that employed an oversampling method combined with and XGBoost algorithm (SMOTE-XGBoost) to predict potential kinase-specific phosphorylation sites in proteins. Moreover, the computed correlations and predictions of kinase-phosphosite interconnections were integrated into the eKPI database (https://ekpi.omicsbio.info/). In summary, our study could provide helpful information and facilitate further research on the regulatory relationship between kinases and phosphosites.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring kinase-phosphosite regulation from phosphoproteome-enriched cancer multi-omics datasets.\",\"authors\":\"Haoyang Cheng, Zhuoran Liang, Yijin Wu, Jiamin Hu, Bijin Cao, Zekun Liu, Bo Liu, Han Cheng, Ze-Xian Liu\",\"doi\":\"10.1093/bib/bbaf143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphorylation in eukaryotic cells plays a key role in regulating cell signaling and disease progression. Despite the ability to detect thousands of phosphosites in a single experiment using high-throughput technologies, the kinases responsible for regulating these sites are largely unidentified. To solve this, we collected the quantitative data at the transcriptional, protein, and phosphorylation levels of 10 159 samples from 23 tumor datasets and 15 adjacent normal tissue datasets. Our analysis aimed to uncover the potential impact and linkage of kinase-phosphosite (KPS) pairs through experimental evidence in publications and prediction tools commonly used. We discovered that both experimentally validated and tool-predicted KPS pairs were enriched in groups where there is a significant correlation between kinase expression/phosphorylation level and the phosphorylation level of phosphosite. This suggested that a quantitative correlation could infer the KPS interconnections. Furthermore, the Spearman's correlation coefficient for these pairs were notably higher in tumor samples, indicating that these regulatory interactions are particularly pronounced in tumors. Consequently, building on the KPS correlations of different datasets as predictive features, we have developed an innovative approach that employed an oversampling method combined with and XGBoost algorithm (SMOTE-XGBoost) to predict potential kinase-specific phosphorylation sites in proteins. Moreover, the computed correlations and predictions of kinase-phosphosite interconnections were integrated into the eKPI database (https://ekpi.omicsbio.info/). In summary, our study could provide helpful information and facilitate further research on the regulatory relationship between kinases and phosphosites.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf143\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf143","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

真核细胞中的磷酸化在调节细胞信号传导和疾病进展中起着关键作用。尽管利用高通量技术能够在一次实验中检测到数千个磷酸位点,但负责调节这些位点的激酶在很大程度上是未知的。为了解决这个问题,我们收集了来自23个肿瘤数据集和15个相邻正常组织数据集的10 159个样本的转录、蛋白质和磷酸化水平的定量数据。我们的分析旨在通过出版物中的实验证据和常用的预测工具揭示激酶-磷酸(KPS)对的潜在影响和联系。我们发现,实验验证和工具预测的KPS对在激酶表达/磷酸化水平和磷酸基磷酸化水平之间存在显著相关性的组中都富集。这表明定量相关性可以推断出KPS的相互关系。此外,这些对的Spearman相关系数在肿瘤样本中明显更高,表明这些调节相互作用在肿瘤中特别明显。因此,基于不同数据集的KPS相关性作为预测特征,我们开发了一种创新的方法,该方法采用过采样方法结合XGBoost算法(SMOTE-XGBoost)来预测蛋白质中潜在的激酶特异性磷酸化位点。此外,计算出的激酶-磷酸基相互连接的相关性和预测被整合到eKPI数据库中(https://ekpi.omicsbio.info/)。综上所述,我们的研究可以为进一步研究激酶和磷位点之间的调控关系提供有益的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring kinase-phosphosite regulation from phosphoproteome-enriched cancer multi-omics datasets.

Phosphorylation in eukaryotic cells plays a key role in regulating cell signaling and disease progression. Despite the ability to detect thousands of phosphosites in a single experiment using high-throughput technologies, the kinases responsible for regulating these sites are largely unidentified. To solve this, we collected the quantitative data at the transcriptional, protein, and phosphorylation levels of 10 159 samples from 23 tumor datasets and 15 adjacent normal tissue datasets. Our analysis aimed to uncover the potential impact and linkage of kinase-phosphosite (KPS) pairs through experimental evidence in publications and prediction tools commonly used. We discovered that both experimentally validated and tool-predicted KPS pairs were enriched in groups where there is a significant correlation between kinase expression/phosphorylation level and the phosphorylation level of phosphosite. This suggested that a quantitative correlation could infer the KPS interconnections. Furthermore, the Spearman's correlation coefficient for these pairs were notably higher in tumor samples, indicating that these regulatory interactions are particularly pronounced in tumors. Consequently, building on the KPS correlations of different datasets as predictive features, we have developed an innovative approach that employed an oversampling method combined with and XGBoost algorithm (SMOTE-XGBoost) to predict potential kinase-specific phosphorylation sites in proteins. Moreover, the computed correlations and predictions of kinase-phosphosite interconnections were integrated into the eKPI database (https://ekpi.omicsbio.info/). In summary, our study could provide helpful information and facilitate further research on the regulatory relationship between kinases and phosphosites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信