一种新的CHK2抑制剂ART-446和奥拉帕尼对DNA修复的双重破坏是三阴性乳腺癌治疗的一种有希望的策略。

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Hong-Jun Kang, Young-Woo Kang, Ha-Young Lee, Sojung Ha, Jong Oh Kim, Woo-Young Kim, Taegon Baik
{"title":"一种新的CHK2抑制剂ART-446和奥拉帕尼对DNA修复的双重破坏是三阴性乳腺癌治疗的一种有希望的策略。","authors":"Hong-Jun Kang, Young-Woo Kang, Ha-Young Lee, Sojung Ha, Jong Oh Kim, Woo-Young Kim, Taegon Baik","doi":"10.4062/biomolther.2025.029","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking targeted therapies and is characterized by high recurrence rates and poor prognosis. Recent advances in targeting DNA damage response (DDR) pathways using poly (ADP‒ribose) polymerase (PARP) inhibitors offer promising therapeutic strategies, especially for TNBC patients with BRCA1/2 mutations. This study reports the development and characterization of ART-446, a novel and selective CHK2 inhibitor. ART-446 showed potent activity against TNBC, regardless of BRCA deficiency, and it also reversed PARP inhibitor resistance. ART-446 potently inhibited CHK2 (IC<sub>50</sub>: 9.06 nM) with high selectivity over other kinases; it synergized with the PARP inhibitor olaparib, enhancing DNA damage, inducing G2/M cell cycle arrest, and promoting apoptosis in both BRCA-mutant and wild-type TNBC cells. Mechanistic analyses revealed that ART-446 sensitized BRCA mutant and WT cells to PARP inhibitors by impairing DNA repair and increasing the accumulation of DNA damage. Importantly, ART-446 disrupted both homologous recombination and nonhomologous end-joining repair pathways, addressing a key limitation of PARP inhibitor monotherapy-resistance in BRCA-proficient cancers. <i>In vivo</i>, the combination of ART-446 and olaparib significantly reduced tumor growth in TNBC xenograft models without noticeable toxicity. The combined treatment increased DNA damage signaling, as evidenced by elevated γH2AX levels, and enhanced the sensitivity of BRCA2-deficient cells to ART-446. These findings underscore the potential of ART-446 to exploit DNA repair deficiencies and overcome resistance mechanisms associated with PARP inhibitors. By addressing the limitations of current treatments and expanding the utility of PARP inhibitors, ART-446 represents a promising candidate for DDR-targeted therapies, offering a novel approach to improve the outcomes of patients with TNBC.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Disruption of DNA Repair by a Novel CHK2 Inhibitor, ART-446, and Olaparib is a Promising Strategy for Triple-Negative Breast Cancer Therapy.\",\"authors\":\"Hong-Jun Kang, Young-Woo Kang, Ha-Young Lee, Sojung Ha, Jong Oh Kim, Woo-Young Kim, Taegon Baik\",\"doi\":\"10.4062/biomolther.2025.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking targeted therapies and is characterized by high recurrence rates and poor prognosis. Recent advances in targeting DNA damage response (DDR) pathways using poly (ADP‒ribose) polymerase (PARP) inhibitors offer promising therapeutic strategies, especially for TNBC patients with BRCA1/2 mutations. This study reports the development and characterization of ART-446, a novel and selective CHK2 inhibitor. ART-446 showed potent activity against TNBC, regardless of BRCA deficiency, and it also reversed PARP inhibitor resistance. ART-446 potently inhibited CHK2 (IC<sub>50</sub>: 9.06 nM) with high selectivity over other kinases; it synergized with the PARP inhibitor olaparib, enhancing DNA damage, inducing G2/M cell cycle arrest, and promoting apoptosis in both BRCA-mutant and wild-type TNBC cells. Mechanistic analyses revealed that ART-446 sensitized BRCA mutant and WT cells to PARP inhibitors by impairing DNA repair and increasing the accumulation of DNA damage. Importantly, ART-446 disrupted both homologous recombination and nonhomologous end-joining repair pathways, addressing a key limitation of PARP inhibitor monotherapy-resistance in BRCA-proficient cancers. <i>In vivo</i>, the combination of ART-446 and olaparib significantly reduced tumor growth in TNBC xenograft models without noticeable toxicity. The combined treatment increased DNA damage signaling, as evidenced by elevated γH2AX levels, and enhanced the sensitivity of BRCA2-deficient cells to ART-446. These findings underscore the potential of ART-446 to exploit DNA repair deficiencies and overcome resistance mechanisms associated with PARP inhibitors. By addressing the limitations of current treatments and expanding the utility of PARP inhibitors, ART-446 represents a promising candidate for DDR-targeted therapies, offering a novel approach to improve the outcomes of patients with TNBC.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2025.029\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2025.029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

三阴性乳腺癌(TNBC)是一种缺乏靶向治疗的侵袭性癌症亚型,其特点是复发率高,预后差。使用聚(adp -核糖)聚合酶(PARP)抑制剂靶向DNA损伤反应(DDR)途径的最新进展提供了有希望的治疗策略,特别是对于BRCA1/2突变的TNBC患者。本研究报道了一种新的选择性CHK2抑制剂ART-446的开发和表征。无论BRCA缺乏与否,ART-446都显示出对TNBC的有效活性,并且它也逆转了PARP抑制剂的抗性。ART-446对CHK2具有高选择性抑制作用(IC50: 9.06 nM);与PARP抑制剂奥拉帕尼协同作用,增强DNA损伤,诱导G2/M细胞周期阻滞,促进brca突变型和野生型TNBC细胞凋亡。机制分析显示,ART-446通过损害DNA修复和增加DNA损伤的积累,使BRCA突变体和WT细胞对PARP抑制剂敏感。重要的是,ART-446破坏了同源重组和非同源末端连接修复途径,解决了brca精通癌症中PARP抑制剂单药耐药的关键限制。在体内,ART-446和奥拉帕尼联合使用可显著降低TNBC异种移植模型的肿瘤生长,且无明显毒性。联合治疗增加了DNA损伤信号,γ - h2ax水平升高证明了这一点,并增强了brca2缺陷细胞对ART-446的敏感性。这些发现强调了ART-446利用DNA修复缺陷和克服与PARP抑制剂相关的耐药机制的潜力。通过解决当前治疗的局限性和扩大PARP抑制剂的效用,ART-446代表了ddr靶向治疗的有希望的候选药物,提供了一种改善TNBC患者预后的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Disruption of DNA Repair by a Novel CHK2 Inhibitor, ART-446, and Olaparib is a Promising Strategy for Triple-Negative Breast Cancer Therapy.

Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking targeted therapies and is characterized by high recurrence rates and poor prognosis. Recent advances in targeting DNA damage response (DDR) pathways using poly (ADP‒ribose) polymerase (PARP) inhibitors offer promising therapeutic strategies, especially for TNBC patients with BRCA1/2 mutations. This study reports the development and characterization of ART-446, a novel and selective CHK2 inhibitor. ART-446 showed potent activity against TNBC, regardless of BRCA deficiency, and it also reversed PARP inhibitor resistance. ART-446 potently inhibited CHK2 (IC50: 9.06 nM) with high selectivity over other kinases; it synergized with the PARP inhibitor olaparib, enhancing DNA damage, inducing G2/M cell cycle arrest, and promoting apoptosis in both BRCA-mutant and wild-type TNBC cells. Mechanistic analyses revealed that ART-446 sensitized BRCA mutant and WT cells to PARP inhibitors by impairing DNA repair and increasing the accumulation of DNA damage. Importantly, ART-446 disrupted both homologous recombination and nonhomologous end-joining repair pathways, addressing a key limitation of PARP inhibitor monotherapy-resistance in BRCA-proficient cancers. In vivo, the combination of ART-446 and olaparib significantly reduced tumor growth in TNBC xenograft models without noticeable toxicity. The combined treatment increased DNA damage signaling, as evidenced by elevated γH2AX levels, and enhanced the sensitivity of BRCA2-deficient cells to ART-446. These findings underscore the potential of ART-446 to exploit DNA repair deficiencies and overcome resistance mechanisms associated with PARP inhibitors. By addressing the limitations of current treatments and expanding the utility of PARP inhibitors, ART-446 represents a promising candidate for DDR-targeted therapies, offering a novel approach to improve the outcomes of patients with TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信