miR-208a-3p靶向PPP6C调控辐射性肺炎进展

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lixin Gong, Yi Liu, Jinyu Wang, Zhe Zhao, Wenfang Duan, Yu Xiao, Haibo Peng, Long Zhao, Mouna Khouchani, Takoui Abdelmajid, Nadia Aittahssaint, Tao He, Zhiqiang Jiang, Jingyi Li
{"title":"miR-208a-3p靶向PPP6C调控辐射性肺炎进展","authors":"Lixin Gong, Yi Liu, Jinyu Wang, Zhe Zhao, Wenfang Duan, Yu Xiao, Haibo Peng, Long Zhao, Mouna Khouchani, Takoui Abdelmajid, Nadia Aittahssaint, Tao He, Zhiqiang Jiang, Jingyi Li","doi":"10.1089/ars.2023.0459","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Radiation-induced pneumonia (RP) is a common complication after radiotherapy for clinical thoracic tumors, and increasing evidence suggests that miRNAs have potential value in regulating radiation-induced lung injury. However, the potential mechanism is still obscure. Here, we evaluated the miRNAs-dependent mechanism involved in the progression of RP. <b><i>Results:</i></b> Our data showed that mmu-miR-208a-3p was consistently highly expressed in the lung tissue of irradiated mice. <i>In vitro</i> studies demonstrated that the expression of miR-208a-3p in cells was significantly increased after X-ray irradiation. Further mechanism studies indicated that radiation-induced upregulation of miR-208a-3p promoted inflammatory responses by suppressing the expression of protein phosphatase 6C (PPP6C) and activating the cyclic GMP-AMP synthase/stimulator of interferon genes protein pathway. Overexpression of PPP6C can alleviate radiation-induced DNA damage and excessive accumulation of ROS. It was also observed that PPP6C inhibited ionizing RP <i>in vivo</i>. [Figure: see text] <b><i>Innovation and Conclusion:</i></b> miR-208a-3p/PPP6C represents a potential therapeutic target for RP which needs to be verified by future clinical studies. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-208a-3p Targets PPP6C to Regulate the Progression of Radiation-Induced Pneumonia.\",\"authors\":\"Lixin Gong, Yi Liu, Jinyu Wang, Zhe Zhao, Wenfang Duan, Yu Xiao, Haibo Peng, Long Zhao, Mouna Khouchani, Takoui Abdelmajid, Nadia Aittahssaint, Tao He, Zhiqiang Jiang, Jingyi Li\",\"doi\":\"10.1089/ars.2023.0459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Radiation-induced pneumonia (RP) is a common complication after radiotherapy for clinical thoracic tumors, and increasing evidence suggests that miRNAs have potential value in regulating radiation-induced lung injury. However, the potential mechanism is still obscure. Here, we evaluated the miRNAs-dependent mechanism involved in the progression of RP. <b><i>Results:</i></b> Our data showed that mmu-miR-208a-3p was consistently highly expressed in the lung tissue of irradiated mice. <i>In vitro</i> studies demonstrated that the expression of miR-208a-3p in cells was significantly increased after X-ray irradiation. Further mechanism studies indicated that radiation-induced upregulation of miR-208a-3p promoted inflammatory responses by suppressing the expression of protein phosphatase 6C (PPP6C) and activating the cyclic GMP-AMP synthase/stimulator of interferon genes protein pathway. Overexpression of PPP6C can alleviate radiation-induced DNA damage and excessive accumulation of ROS. It was also observed that PPP6C inhibited ionizing RP <i>in vivo</i>. [Figure: see text] <b><i>Innovation and Conclusion:</i></b> miR-208a-3p/PPP6C represents a potential therapeutic target for RP which needs to be verified by future clinical studies. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2023.0459\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0459","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:放射性肺炎(RP)是临床胸部肿瘤放疗后常见的并发症,越来越多的证据表明,mirna在调节放射性肺损伤中具有潜在的价值。然而,潜在的机制仍然不清楚。在这里,我们评估了参与RP进展的mirna依赖机制。结果:我们的数据显示,mmu-miR-208a-3p在辐照小鼠的肺组织中持续高表达。体外研究表明,x射线照射后细胞中miR-208a-3p的表达明显增加。进一步的机制研究表明,辐射诱导的miR-208a-3p上调通过抑制蛋白磷酸酶6C (PPP6C)的表达和激活环GMP-AMP合成酶/干扰素基因蛋白通路刺激因子来促进炎症反应。PPP6C的过表达可以减轻辐射引起的DNA损伤和ROS的过度积累。PPP6C在体内也能抑制RP的电离。创新与结论:miR-208a-3p/PPP6C是RP的潜在治疗靶点,需要在未来的临床研究中得到验证。Antioxid。氧化还原信号:00000 - 00000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
miR-208a-3p Targets PPP6C to Regulate the Progression of Radiation-Induced Pneumonia.

Aims: Radiation-induced pneumonia (RP) is a common complication after radiotherapy for clinical thoracic tumors, and increasing evidence suggests that miRNAs have potential value in regulating radiation-induced lung injury. However, the potential mechanism is still obscure. Here, we evaluated the miRNAs-dependent mechanism involved in the progression of RP. Results: Our data showed that mmu-miR-208a-3p was consistently highly expressed in the lung tissue of irradiated mice. In vitro studies demonstrated that the expression of miR-208a-3p in cells was significantly increased after X-ray irradiation. Further mechanism studies indicated that radiation-induced upregulation of miR-208a-3p promoted inflammatory responses by suppressing the expression of protein phosphatase 6C (PPP6C) and activating the cyclic GMP-AMP synthase/stimulator of interferon genes protein pathway. Overexpression of PPP6C can alleviate radiation-induced DNA damage and excessive accumulation of ROS. It was also observed that PPP6C inhibited ionizing RP in vivo. [Figure: see text] Innovation and Conclusion: miR-208a-3p/PPP6C represents a potential therapeutic target for RP which needs to be verified by future clinical studies. Antioxid. Redox Signal. 00, 000-000.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信