{"title":"基于t5protechem的分子和蛋白质语言表示统一深度学习。","authors":"Thomas Kelly, Song Xia, Jieyu Lu, Yingkai Zhang","doi":"10.1021/acs.jcim.5c00051","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has revolutionized difficult tasks in chemistry and biology, yet existing language models often treat these domains separately, relying on concatenated architectures and independently pretrained weights. These approaches fail to fully exploit the shared atomic foundations of molecular and protein sequences. Here, we introduce T5ProtChem, a unified model based on the T5 architecture, designed to simultaneously process molecular and protein sequences. Using a new pretraining objective, ProtiSMILES, T5ProtChem bridges the molecular and protein domains, enabling efficient, generalizable protein-chemical modeling. The model achieves a state-of-the-art performance in tasks such as binding affinity prediction and reaction prediction, while having a strong performance in protein function prediction. Additionally, it supports novel applications, including covalent binder classification and sequence-level adduct prediction. These results demonstrate the versatility of unified language models for drug discovery, protein engineering, and other interdisciplinary efforts in computational biology and chemistry.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3990-3998"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unified Deep Learning of Molecular and Protein Language Representations with T5ProtChem.\",\"authors\":\"Thomas Kelly, Song Xia, Jieyu Lu, Yingkai Zhang\",\"doi\":\"10.1021/acs.jcim.5c00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning has revolutionized difficult tasks in chemistry and biology, yet existing language models often treat these domains separately, relying on concatenated architectures and independently pretrained weights. These approaches fail to fully exploit the shared atomic foundations of molecular and protein sequences. Here, we introduce T5ProtChem, a unified model based on the T5 architecture, designed to simultaneously process molecular and protein sequences. Using a new pretraining objective, ProtiSMILES, T5ProtChem bridges the molecular and protein domains, enabling efficient, generalizable protein-chemical modeling. The model achieves a state-of-the-art performance in tasks such as binding affinity prediction and reaction prediction, while having a strong performance in protein function prediction. Additionally, it supports novel applications, including covalent binder classification and sequence-level adduct prediction. These results demonstrate the versatility of unified language models for drug discovery, protein engineering, and other interdisciplinary efforts in computational biology and chemistry.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"3990-3998\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00051\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00051","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Unified Deep Learning of Molecular and Protein Language Representations with T5ProtChem.
Deep learning has revolutionized difficult tasks in chemistry and biology, yet existing language models often treat these domains separately, relying on concatenated architectures and independently pretrained weights. These approaches fail to fully exploit the shared atomic foundations of molecular and protein sequences. Here, we introduce T5ProtChem, a unified model based on the T5 architecture, designed to simultaneously process molecular and protein sequences. Using a new pretraining objective, ProtiSMILES, T5ProtChem bridges the molecular and protein domains, enabling efficient, generalizable protein-chemical modeling. The model achieves a state-of-the-art performance in tasks such as binding affinity prediction and reaction prediction, while having a strong performance in protein function prediction. Additionally, it supports novel applications, including covalent binder classification and sequence-level adduct prediction. These results demonstrate the versatility of unified language models for drug discovery, protein engineering, and other interdisciplinary efforts in computational biology and chemistry.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.