EDG-CDM:一种新的基于编码器引导的条件扩散模型的有限数据图像合成方法

IF 1.3 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haopeng Lei, Hao Yin, Kaijun Liang, Mingwen Wang, Jinshan Zeng, Guoliang Luo
{"title":"EDG-CDM:一种新的基于编码器引导的条件扩散模型的有限数据图像合成方法","authors":"Haopeng Lei,&nbsp;Hao Yin,&nbsp;Kaijun Liang,&nbsp;Mingwen Wang,&nbsp;Jinshan Zeng,&nbsp;Guoliang Luo","doi":"10.1049/cvi2.70018","DOIUrl":null,"url":null,"abstract":"<p>The Diffusion Probabilistic Model (DM) has emerged as a powerful generative model in the field of image synthesis, capable of producing high-quality and realistic images. However, training DM requires a large and diverse dataset, which can be challenging to obtain. This limitation weakens the model's generalisation and robustness when training data is limited. To address this issue, EDG-CDM, an innovative encoder-guided conditional diffusion model was proposed for image synthesis with limited data. Firstly, the authors pre-train the encoder by introducing noise to capture the distribution of image features and generate the condition vector through contrastive learning and KL divergence. Next, the encoder undergoes further training with classification to integrate image class information, providing more favourable and versatile conditions for the diffusion model. Subsequently, the encoder is connected to the diffusion model, which is trained using all available data with encoder-provided conditions. Finally, the authors evaluate EDG-CDM on various public datasets with limited data, conducting extensive experiments and comparing our results with state-of-the-art methods using metrics such as Fréchet Inception Distance and Inception Score. Our experiments demonstrate that EDG-CDM outperforms existing models by consistently achieving the lowest FID scores and the highest IS scores, highlighting its effectiveness in generating high-quality and diverse images with limited training data. These results underscore the significance of EDG-CDM in advancing image synthesis techniques under data-constrained scenarios.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70018","citationCount":"0","resultStr":"{\"title\":\"EDG-CDM: A New Encoder-Guided Conditional Diffusion Model-Based Image Synthesis Method for Limited Data\",\"authors\":\"Haopeng Lei,&nbsp;Hao Yin,&nbsp;Kaijun Liang,&nbsp;Mingwen Wang,&nbsp;Jinshan Zeng,&nbsp;Guoliang Luo\",\"doi\":\"10.1049/cvi2.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Diffusion Probabilistic Model (DM) has emerged as a powerful generative model in the field of image synthesis, capable of producing high-quality and realistic images. However, training DM requires a large and diverse dataset, which can be challenging to obtain. This limitation weakens the model's generalisation and robustness when training data is limited. To address this issue, EDG-CDM, an innovative encoder-guided conditional diffusion model was proposed for image synthesis with limited data. Firstly, the authors pre-train the encoder by introducing noise to capture the distribution of image features and generate the condition vector through contrastive learning and KL divergence. Next, the encoder undergoes further training with classification to integrate image class information, providing more favourable and versatile conditions for the diffusion model. Subsequently, the encoder is connected to the diffusion model, which is trained using all available data with encoder-provided conditions. Finally, the authors evaluate EDG-CDM on various public datasets with limited data, conducting extensive experiments and comparing our results with state-of-the-art methods using metrics such as Fréchet Inception Distance and Inception Score. Our experiments demonstrate that EDG-CDM outperforms existing models by consistently achieving the lowest FID scores and the highest IS scores, highlighting its effectiveness in generating high-quality and diverse images with limited training data. These results underscore the significance of EDG-CDM in advancing image synthesis techniques under data-constrained scenarios.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.70018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.70018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

扩散概率模型(Diffusion Probabilistic Model, DM)是图像合成领域中一种强大的生成模型,能够生成高质量、逼真的图像。然而,训练DM需要一个大而多样的数据集,这可能是具有挑战性的。当训练数据有限时,这种限制削弱了模型的泛化和鲁棒性。为了解决这一问题,提出了一种创新的编码器引导条件扩散模型EDG-CDM,用于有限数据的图像合成。首先,通过引入噪声对编码器进行预训练,捕捉图像特征的分布,并通过对比学习和KL散度生成条件向量;接下来,对编码器进行进一步的分类训练,整合图像类信息,为扩散模型提供更有利和通用的条件。随后,编码器连接到扩散模型,扩散模型使用编码器提供的条件下的所有可用数据进行训练。最后,作者在各种有限数据的公共数据集上评估了EDG-CDM,进行了广泛的实验,并将我们的结果与使用fr盗梦距离和盗梦分数等指标的最先进方法进行了比较。我们的实验表明,EDG-CDM优于现有模型,始终如一地获得最低的FID分数和最高的IS分数,突出了其在有限的训练数据下生成高质量和多样化图像的有效性。这些结果强调了EDG-CDM在数据受限情况下推进图像合成技术的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

EDG-CDM: A New Encoder-Guided Conditional Diffusion Model-Based Image Synthesis Method for Limited Data

EDG-CDM: A New Encoder-Guided Conditional Diffusion Model-Based Image Synthesis Method for Limited Data

EDG-CDM: A New Encoder-Guided Conditional Diffusion Model-Based Image Synthesis Method for Limited Data

EDG-CDM: A New Encoder-Guided Conditional Diffusion Model-Based Image Synthesis Method for Limited Data

The Diffusion Probabilistic Model (DM) has emerged as a powerful generative model in the field of image synthesis, capable of producing high-quality and realistic images. However, training DM requires a large and diverse dataset, which can be challenging to obtain. This limitation weakens the model's generalisation and robustness when training data is limited. To address this issue, EDG-CDM, an innovative encoder-guided conditional diffusion model was proposed for image synthesis with limited data. Firstly, the authors pre-train the encoder by introducing noise to capture the distribution of image features and generate the condition vector through contrastive learning and KL divergence. Next, the encoder undergoes further training with classification to integrate image class information, providing more favourable and versatile conditions for the diffusion model. Subsequently, the encoder is connected to the diffusion model, which is trained using all available data with encoder-provided conditions. Finally, the authors evaluate EDG-CDM on various public datasets with limited data, conducting extensive experiments and comparing our results with state-of-the-art methods using metrics such as Fréchet Inception Distance and Inception Score. Our experiments demonstrate that EDG-CDM outperforms existing models by consistently achieving the lowest FID scores and the highest IS scores, highlighting its effectiveness in generating high-quality and diverse images with limited training data. These results underscore the significance of EDG-CDM in advancing image synthesis techniques under data-constrained scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信