{"title":"A Reinforcement Learning-Based AGV Scheduling for Automated Container Terminals With Resilient Charging Strategies","authors":"Shaorui Zhou, Yeyi Yu, Min Zhao, Xiaopo Zhuo, Zhaotong Lian, Xun Zhou","doi":"10.1049/itr2.70027","DOIUrl":null,"url":null,"abstract":"<p>Automated guided vehicles (AGVs) serve as pivotal equipment for horizontal transportation in automated container terminals (ACTs), necessitating the optimization of AGV scheduling. The dynamic nature of port operations introduces uncertainties in AGV energy consumption, while battery constraints pose significant operational challenges. However, limited research has integrated charging and discharging behaviors into AGV operations. This study innovatively proposes an AGV scheduling model that incorporates a resilient and adaptive charging strategy, adjusting the balance between vehicle charging and the completion of transportation tasks, enabling AGVs to complete fixed container transportation tasks in the shortest time. Differing from most existing research primarily based on OR-typed algorithms, this study proposes a reinforcement learning-based AGV scheduling method. Finally, a series of numerical experiments, which is based on a real large-scale automated terminal in the Pearl River Delta (PRD) region of Southern China, are conducted to verify the effectiveness and efficiency of the model and the algorithm. Some beneficial management insights are obtained from sensitivity analysis for practitioners. Notably, the paramount observation is that the operational efficacy of AGVs does not necessarily correlate positively with their number. Instead, it follows a “U-shaped” curve trend, indicating an optimal range beyond which performance diminishes.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Reinforcement Learning-Based AGV Scheduling for Automated Container Terminals With Resilient Charging Strategies
Automated guided vehicles (AGVs) serve as pivotal equipment for horizontal transportation in automated container terminals (ACTs), necessitating the optimization of AGV scheduling. The dynamic nature of port operations introduces uncertainties in AGV energy consumption, while battery constraints pose significant operational challenges. However, limited research has integrated charging and discharging behaviors into AGV operations. This study innovatively proposes an AGV scheduling model that incorporates a resilient and adaptive charging strategy, adjusting the balance between vehicle charging and the completion of transportation tasks, enabling AGVs to complete fixed container transportation tasks in the shortest time. Differing from most existing research primarily based on OR-typed algorithms, this study proposes a reinforcement learning-based AGV scheduling method. Finally, a series of numerical experiments, which is based on a real large-scale automated terminal in the Pearl River Delta (PRD) region of Southern China, are conducted to verify the effectiveness and efficiency of the model and the algorithm. Some beneficial management insights are obtained from sensitivity analysis for practitioners. Notably, the paramount observation is that the operational efficacy of AGVs does not necessarily correlate positively with their number. Instead, it follows a “U-shaped” curve trend, indicating an optimal range beyond which performance diminishes.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf