基于卷积多头自注意神经网络的视觉辅助损伤检测:一种新的损伤信息提取与融合框架

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yiming Zhang, Zili Xu, Guang Li, Jun Wang
{"title":"基于卷积多头自注意神经网络的视觉辅助损伤检测:一种新的损伤信息提取与融合框架","authors":"Yiming Zhang,&nbsp;Zili Xu,&nbsp;Guang Li,&nbsp;Jun Wang","doi":"10.1155/stc/1677778","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The current application of vibration-based damage detection is constrained by the low spatial resolution of signals obtained from contact sensors and an overreliance on hand-engineered damage indices. In this paper, we propose a novel vision-aided framework featuring convolutional multihead self-attention neural network (CMSNN) to deal with damage detection tasks. To meet the requirement of spatially intensive measurements, a computer vision algorithm called optical flow estimation is employed to provide informative enough mode shapes. As a downstream process, a CMSNN model is designed to autonomously learn high-level damage representations from noisy mode shapes without any manual feature design. In contrast to the conventional approach of solely stacking convolutional layers, the model is enhanced by combining a convolutional neural network (CNN)–based multiscale information extraction module with an attention-based information fusion module. During the training process, various scenarios are considered, including measurement noise, data missing, multiple damages, and undamaged samples. Moreover, the parameter transfer strategy is introduced to enhance the universality of the application. The performance of the proposed framework is extensively verified via datasets based on numerical simulations and two laboratory measurements. The results demonstrate that the proposed framework can provide reliable damage detection results even when the input data are corrupted by noise or incomplete.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/1677778","citationCount":"0","resultStr":"{\"title\":\"Vision-Aided Damage Detection With Convolutional Multihead Self-Attention Neural Network: A Novel Framework for Damage Information Extraction and Fusion\",\"authors\":\"Yiming Zhang,&nbsp;Zili Xu,&nbsp;Guang Li,&nbsp;Jun Wang\",\"doi\":\"10.1155/stc/1677778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The current application of vibration-based damage detection is constrained by the low spatial resolution of signals obtained from contact sensors and an overreliance on hand-engineered damage indices. In this paper, we propose a novel vision-aided framework featuring convolutional multihead self-attention neural network (CMSNN) to deal with damage detection tasks. To meet the requirement of spatially intensive measurements, a computer vision algorithm called optical flow estimation is employed to provide informative enough mode shapes. As a downstream process, a CMSNN model is designed to autonomously learn high-level damage representations from noisy mode shapes without any manual feature design. In contrast to the conventional approach of solely stacking convolutional layers, the model is enhanced by combining a convolutional neural network (CNN)–based multiscale information extraction module with an attention-based information fusion module. During the training process, various scenarios are considered, including measurement noise, data missing, multiple damages, and undamaged samples. Moreover, the parameter transfer strategy is introduced to enhance the universality of the application. The performance of the proposed framework is extensively verified via datasets based on numerical simulations and two laboratory measurements. The results demonstrate that the proposed framework can provide reliable damage detection results even when the input data are corrupted by noise or incomplete.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/1677778\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/1677778\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/1677778","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前基于振动的损伤检测的应用受到接触传感器信号空间分辨率低和过度依赖手工设计的损伤指标的限制。本文提出了一种基于卷积多头自注意神经网络(CMSNN)的视觉辅助框架来处理损伤检测任务。为了满足空间密集测量的要求,采用了一种称为光流估计的计算机视觉算法来提供足够信息量的模态振型。作为一个下游过程,CMSNN模型被设计成在没有任何手动特征设计的情况下,从噪声模态振型中自主学习高级损伤表示。与传统的单独堆叠卷积层的方法不同,该模型通过将基于卷积神经网络(CNN)的多尺度信息提取模块与基于注意力的信息融合模块相结合来增强模型。在训练过程中,考虑了各种情况,包括测量噪声、数据丢失、多重损坏和未损坏的样本。此外,还引入了参数传递策略,提高了应用的通用性。通过基于数值模拟和两个实验室测量的数据集广泛验证了所提出框架的性能。结果表明,即使在输入数据被噪声破坏或不完整的情况下,该框架也能提供可靠的损伤检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vision-Aided Damage Detection With Convolutional Multihead Self-Attention Neural Network: A Novel Framework for Damage Information Extraction and Fusion

Vision-Aided Damage Detection With Convolutional Multihead Self-Attention Neural Network: A Novel Framework for Damage Information Extraction and Fusion

The current application of vibration-based damage detection is constrained by the low spatial resolution of signals obtained from contact sensors and an overreliance on hand-engineered damage indices. In this paper, we propose a novel vision-aided framework featuring convolutional multihead self-attention neural network (CMSNN) to deal with damage detection tasks. To meet the requirement of spatially intensive measurements, a computer vision algorithm called optical flow estimation is employed to provide informative enough mode shapes. As a downstream process, a CMSNN model is designed to autonomously learn high-level damage representations from noisy mode shapes without any manual feature design. In contrast to the conventional approach of solely stacking convolutional layers, the model is enhanced by combining a convolutional neural network (CNN)–based multiscale information extraction module with an attention-based information fusion module. During the training process, various scenarios are considered, including measurement noise, data missing, multiple damages, and undamaged samples. Moreover, the parameter transfer strategy is introduced to enhance the universality of the application. The performance of the proposed framework is extensively verified via datasets based on numerical simulations and two laboratory measurements. The results demonstrate that the proposed framework can provide reliable damage detection results even when the input data are corrupted by noise or incomplete.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信