{"title":"一种创新的深度学习驱动技术,用于恢复丢失的高密度表面肌电信号","authors":"Juzheng Mao, Honghan Li, Yongkun Zhao","doi":"10.1007/s10489-025-06471-9","DOIUrl":null,"url":null,"abstract":"<div><p>High-density surface electromyography (HD-sEMG) plays a crucial role in medical diagnostics, prosthetic control, and human-machine interactions. Compared to traditional bipolar sEMG, HD-sEMG employs smaller electrode spacing and sizes. This configuration not only reduces the signal collection area but also increases sensitivity to individual variations in skin impedance. Additionally, smaller high-density electrodes are more susceptible to environmental electromagnetic interference, thereby increasing the risk of signal loss and limiting the further development and application of HD-sEMG technology. To address this issue, this study introduces a novel deep learning-based technique specifically designed to restore lost HD-sEMG signals. Through an improved novel convolutional neural network (CNN), our method can reconstruct HD-sEMG signals both efficiently and accurately. Experimental results demonstrate that the proposed CNN algorithm effectively reconstructs lost HD-sEMG signals with high fidelity. The average root mean square error (RMSE) across all participants was 0.108, the mean absolute error (MAE) was 0.070, and the coefficient of determination (<span>\\(R^2\\)</span>) was 0.98. Furthermore, the model achieved an average structural similarity index measure (SSIM) of 0.96 and a peak signal-to-noise ratio (PSNR) of 29.13 dB, indicating high levels of structural similarity and signal clarity in the reconstructed data. These findings highlight the robustness and effectiveness of our method, suggesting its potential for enhancing the reliability and utility of HD-sEMG signals in real applications.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06471-9.pdf","citationCount":"0","resultStr":"{\"title\":\"An innovative deep learning-driven technique for restoration of lost high-density surface electromyography signals\",\"authors\":\"Juzheng Mao, Honghan Li, Yongkun Zhao\",\"doi\":\"10.1007/s10489-025-06471-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-density surface electromyography (HD-sEMG) plays a crucial role in medical diagnostics, prosthetic control, and human-machine interactions. Compared to traditional bipolar sEMG, HD-sEMG employs smaller electrode spacing and sizes. This configuration not only reduces the signal collection area but also increases sensitivity to individual variations in skin impedance. Additionally, smaller high-density electrodes are more susceptible to environmental electromagnetic interference, thereby increasing the risk of signal loss and limiting the further development and application of HD-sEMG technology. To address this issue, this study introduces a novel deep learning-based technique specifically designed to restore lost HD-sEMG signals. Through an improved novel convolutional neural network (CNN), our method can reconstruct HD-sEMG signals both efficiently and accurately. Experimental results demonstrate that the proposed CNN algorithm effectively reconstructs lost HD-sEMG signals with high fidelity. The average root mean square error (RMSE) across all participants was 0.108, the mean absolute error (MAE) was 0.070, and the coefficient of determination (<span>\\\\(R^2\\\\)</span>) was 0.98. Furthermore, the model achieved an average structural similarity index measure (SSIM) of 0.96 and a peak signal-to-noise ratio (PSNR) of 29.13 dB, indicating high levels of structural similarity and signal clarity in the reconstructed data. These findings highlight the robustness and effectiveness of our method, suggesting its potential for enhancing the reliability and utility of HD-sEMG signals in real applications.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-025-06471-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06471-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06471-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An innovative deep learning-driven technique for restoration of lost high-density surface electromyography signals
High-density surface electromyography (HD-sEMG) plays a crucial role in medical diagnostics, prosthetic control, and human-machine interactions. Compared to traditional bipolar sEMG, HD-sEMG employs smaller electrode spacing and sizes. This configuration not only reduces the signal collection area but also increases sensitivity to individual variations in skin impedance. Additionally, smaller high-density electrodes are more susceptible to environmental electromagnetic interference, thereby increasing the risk of signal loss and limiting the further development and application of HD-sEMG technology. To address this issue, this study introduces a novel deep learning-based technique specifically designed to restore lost HD-sEMG signals. Through an improved novel convolutional neural network (CNN), our method can reconstruct HD-sEMG signals both efficiently and accurately. Experimental results demonstrate that the proposed CNN algorithm effectively reconstructs lost HD-sEMG signals with high fidelity. The average root mean square error (RMSE) across all participants was 0.108, the mean absolute error (MAE) was 0.070, and the coefficient of determination (\(R^2\)) was 0.98. Furthermore, the model achieved an average structural similarity index measure (SSIM) of 0.96 and a peak signal-to-noise ratio (PSNR) of 29.13 dB, indicating high levels of structural similarity and signal clarity in the reconstructed data. These findings highlight the robustness and effectiveness of our method, suggesting its potential for enhancing the reliability and utility of HD-sEMG signals in real applications.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.