{"title":"基于信号数据的医疗动作识别的位置和方向感知一次性学习","authors":"Leiyu Xie;Yuxing Yang;Zeyu Fu;Syed Mohsen Naqvi","doi":"10.1109/TMM.2024.3521703","DOIUrl":null,"url":null,"abstract":"In this article, we propose a position and orientation-aware one-shot learning framework for medical action recognition from signal data. The proposed framework comprises two stages and each stage includes signal-level image generation (SIG), cross-attention (CsA), and dynamic time warping (DTW) modules and the information fusion between the proposed privacy-preserved position and orientation features. The proposed SIG method aims to transform the raw skeleton data into privacy-preserved features for training. The CsA module is developed to guide the network in reducing medical action recognition bias and more focusing on important human body parts for each specific action, aimed at addressing similar medical action related issues. Moreover, the DTW module is employed to minimize temporal mismatching between instances and further improve model performance. Furthermore, the proposed privacy-preserved orientation-level features are utilized to assist the position-level features in both of the two stages for enhancing medical action recognition performance. Extensive experimental results on the widely-used and well-known NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD datasets all demonstrate the effectiveness of the proposed method, which outperforms the other state-of-the-art methods with general dataset partitioning by 2.7%, 6.2% and 4.1%, respectively.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1860-1873"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Position and Orientation Aware One-Shot Learning for Medical Action Recognition From Signal Data\",\"authors\":\"Leiyu Xie;Yuxing Yang;Zeyu Fu;Syed Mohsen Naqvi\",\"doi\":\"10.1109/TMM.2024.3521703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a position and orientation-aware one-shot learning framework for medical action recognition from signal data. The proposed framework comprises two stages and each stage includes signal-level image generation (SIG), cross-attention (CsA), and dynamic time warping (DTW) modules and the information fusion between the proposed privacy-preserved position and orientation features. The proposed SIG method aims to transform the raw skeleton data into privacy-preserved features for training. The CsA module is developed to guide the network in reducing medical action recognition bias and more focusing on important human body parts for each specific action, aimed at addressing similar medical action related issues. Moreover, the DTW module is employed to minimize temporal mismatching between instances and further improve model performance. Furthermore, the proposed privacy-preserved orientation-level features are utilized to assist the position-level features in both of the two stages for enhancing medical action recognition performance. Extensive experimental results on the widely-used and well-known NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD datasets all demonstrate the effectiveness of the proposed method, which outperforms the other state-of-the-art methods with general dataset partitioning by 2.7%, 6.2% and 4.1%, respectively.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"1860-1873\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814994/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814994/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Position and Orientation Aware One-Shot Learning for Medical Action Recognition From Signal Data
In this article, we propose a position and orientation-aware one-shot learning framework for medical action recognition from signal data. The proposed framework comprises two stages and each stage includes signal-level image generation (SIG), cross-attention (CsA), and dynamic time warping (DTW) modules and the information fusion between the proposed privacy-preserved position and orientation features. The proposed SIG method aims to transform the raw skeleton data into privacy-preserved features for training. The CsA module is developed to guide the network in reducing medical action recognition bias and more focusing on important human body parts for each specific action, aimed at addressing similar medical action related issues. Moreover, the DTW module is employed to minimize temporal mismatching between instances and further improve model performance. Furthermore, the proposed privacy-preserved orientation-level features are utilized to assist the position-level features in both of the two stages for enhancing medical action recognition performance. Extensive experimental results on the widely-used and well-known NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD datasets all demonstrate the effectiveness of the proposed method, which outperforms the other state-of-the-art methods with general dataset partitioning by 2.7%, 6.2% and 4.1%, respectively.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.