基于图学习的电力系统健康评估模型

IF 3.3 Q3 ENERGY & FUELS
Koji Yamashita;Nanpeng Yu;Evangelos Farantatos;Lin Zhu
{"title":"基于图学习的电力系统健康评估模型","authors":"Koji Yamashita;Nanpeng Yu;Evangelos Farantatos;Lin Zhu","doi":"10.1109/OAJPE.2025.3556004","DOIUrl":null,"url":null,"abstract":"As the power transmission system’s energy sources become increasingly diversified, the grid stability is experiencing increased fluctuations, thereby necessitating more frequent and near real-time monitoring by grid operators. The power system security has been monitored through real-time contingency analysis and dynamic security assessment framework, both of which are typically based on time-domain simulations or power flow calculations. Achieving higher accuracy in grid health level prediction often requires time-consuming simulation and analysis. To improve computational efficiency, this paper develops machine learning models with phasor measurement unit (PMU) data to monitor the power system health index, focusing on rotor angle stability and frequency stability. The proposed machine learning models accurately predict frequency and angle stability indicators, essential for evaluating grid health considering various contingencies, even when dealing with limited PMU deployment in transmission grids. The proposed framework leverages a physics-informed graph convolution network and graph attention network with ordinal encoders, which are benchmarked with multi-layer perceptron models. These models are trained on dataset derived from an augmented IEEE 118-bus system with different demand levels and fuel mix, including tailored dynamic generator models, generator controller models, and grid protection models. The numerical studies explored the performance of the proposed and baseline machine learning models under both full PMU coverage and various partial PMU coverage conditions, where different data imputation methods are used for substations without PMUs. The findings from this study offer valuable insights, such as machine learning model selection and critical PMU locations regarding power equipment, into the design of data-driven grid health index prediction models for power systems.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"181-193"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10945887","citationCount":"0","resultStr":"{\"title\":\"Graph Learning-Based Power System Health Assessment Model\",\"authors\":\"Koji Yamashita;Nanpeng Yu;Evangelos Farantatos;Lin Zhu\",\"doi\":\"10.1109/OAJPE.2025.3556004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the power transmission system’s energy sources become increasingly diversified, the grid stability is experiencing increased fluctuations, thereby necessitating more frequent and near real-time monitoring by grid operators. The power system security has been monitored through real-time contingency analysis and dynamic security assessment framework, both of which are typically based on time-domain simulations or power flow calculations. Achieving higher accuracy in grid health level prediction often requires time-consuming simulation and analysis. To improve computational efficiency, this paper develops machine learning models with phasor measurement unit (PMU) data to monitor the power system health index, focusing on rotor angle stability and frequency stability. The proposed machine learning models accurately predict frequency and angle stability indicators, essential for evaluating grid health considering various contingencies, even when dealing with limited PMU deployment in transmission grids. The proposed framework leverages a physics-informed graph convolution network and graph attention network with ordinal encoders, which are benchmarked with multi-layer perceptron models. These models are trained on dataset derived from an augmented IEEE 118-bus system with different demand levels and fuel mix, including tailored dynamic generator models, generator controller models, and grid protection models. The numerical studies explored the performance of the proposed and baseline machine learning models under both full PMU coverage and various partial PMU coverage conditions, where different data imputation methods are used for substations without PMUs. The findings from this study offer valuable insights, such as machine learning model selection and critical PMU locations regarding power equipment, into the design of data-driven grid health index prediction models for power systems.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":\"12 \",\"pages\":\"181-193\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10945887\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945887/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着输变电系统能源来源的日益多样化,电网的稳定性波动越来越大,需要电网运营商更加频繁和接近实时的监控。电力系统的安全监测主要通过实时应急分析和动态安全评估框架来实现,而这两种方法通常都是基于时域仿真或潮流计算。要实现更高的网格健康水平预测精度,往往需要耗时的仿真和分析。为了提高计算效率,本文开发了基于相量测量单元(PMU)数据的机器学习模型来监测电力系统健康指标,重点关注转子角度稳定性和频率稳定性。所提出的机器学习模型准确地预测频率和角度稳定性指标,这对于考虑各种突发事件评估电网健康状况至关重要,即使在处理输电网中有限的PMU部署时也是如此。所提出的框架利用了带有有序编码器的物理信息图卷积网络和图注意网络,这些网络使用多层感知器模型进行基准测试。这些模型是在基于不同需求水平和燃料组合的增强型IEEE 118总线系统的数据集上进行训练的,包括定制的动态发电机模型、发电机控制器模型和电网保护模型。数值研究探讨了所提出的和基线机器学习模型在全PMU覆盖和各种部分PMU覆盖条件下的性能,其中对没有PMU的变电站使用了不同的数据输入方法。这项研究的结果为电力系统数据驱动的电网健康指数预测模型的设计提供了有价值的见解,例如机器学习模型选择和电力设备的关键PMU位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Learning-Based Power System Health Assessment Model
As the power transmission system’s energy sources become increasingly diversified, the grid stability is experiencing increased fluctuations, thereby necessitating more frequent and near real-time monitoring by grid operators. The power system security has been monitored through real-time contingency analysis and dynamic security assessment framework, both of which are typically based on time-domain simulations or power flow calculations. Achieving higher accuracy in grid health level prediction often requires time-consuming simulation and analysis. To improve computational efficiency, this paper develops machine learning models with phasor measurement unit (PMU) data to monitor the power system health index, focusing on rotor angle stability and frequency stability. The proposed machine learning models accurately predict frequency and angle stability indicators, essential for evaluating grid health considering various contingencies, even when dealing with limited PMU deployment in transmission grids. The proposed framework leverages a physics-informed graph convolution network and graph attention network with ordinal encoders, which are benchmarked with multi-layer perceptron models. These models are trained on dataset derived from an augmented IEEE 118-bus system with different demand levels and fuel mix, including tailored dynamic generator models, generator controller models, and grid protection models. The numerical studies explored the performance of the proposed and baseline machine learning models under both full PMU coverage and various partial PMU coverage conditions, where different data imputation methods are used for substations without PMUs. The findings from this study offer valuable insights, such as machine learning model selection and critical PMU locations regarding power equipment, into the design of data-driven grid health index prediction models for power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信