估算小区域阿片类药物死亡率时纳入异质性高危人群不确定性的贝叶斯空间测量误差方法

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Emily N. Peterson , Rachel C. Nethery , Jarvis T. Chen , Loni P. Tabb , Brent A. Coull , Frederic B. Piel , Lance A. Waller
{"title":"估算小区域阿片类药物死亡率时纳入异质性高危人群不确定性的贝叶斯空间测量误差方法","authors":"Emily N. Peterson ,&nbsp;Rachel C. Nethery ,&nbsp;Jarvis T. Chen ,&nbsp;Loni P. Tabb ,&nbsp;Brent A. Coull ,&nbsp;Frederic B. Piel ,&nbsp;Lance A. Waller","doi":"10.1016/j.sste.2025.100719","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring small-area geographical population trends in opioid mortality has significant implications for informing preventative resource allocation. A common approach to estimating small-area opioid mortality uses a standard disease mapping method where population-at-risk estimates (denominators) are treated as fixed. This assumption ignores the uncertainty in small-area population estimates, potentially biasing risk estimates and underestimating their uncertainties. We compare a Bayesian Spatial Berkson Error model and a Bayesian Spatial Classical Error model to a naive approach that treats denominators as fixed. Using simulations, we illustrate potential bias from ignored population-at-risk uncertainty. We apply these methods to obtain 2020 opioid mortality risk estimates for 159 counties in Georgia. Assessing differences in bias and uncertainty across approaches can improve the accuracy of small-area opioid risk estimates, guiding public health interventions, policies, and resource allocation.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"53 ","pages":"Article 100719"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian spatial measurement error approach to incorporate heterogeneous population-at-risk uncertainty in estimating small-area opioid mortality rates\",\"authors\":\"Emily N. Peterson ,&nbsp;Rachel C. Nethery ,&nbsp;Jarvis T. Chen ,&nbsp;Loni P. Tabb ,&nbsp;Brent A. Coull ,&nbsp;Frederic B. Piel ,&nbsp;Lance A. Waller\",\"doi\":\"10.1016/j.sste.2025.100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring small-area geographical population trends in opioid mortality has significant implications for informing preventative resource allocation. A common approach to estimating small-area opioid mortality uses a standard disease mapping method where population-at-risk estimates (denominators) are treated as fixed. This assumption ignores the uncertainty in small-area population estimates, potentially biasing risk estimates and underestimating their uncertainties. We compare a Bayesian Spatial Berkson Error model and a Bayesian Spatial Classical Error model to a naive approach that treats denominators as fixed. Using simulations, we illustrate potential bias from ignored population-at-risk uncertainty. We apply these methods to obtain 2020 opioid mortality risk estimates for 159 counties in Georgia. Assessing differences in bias and uncertainty across approaches can improve the accuracy of small-area opioid risk estimates, guiding public health interventions, policies, and resource allocation.</div></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"53 \",\"pages\":\"Article 100719\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584525000103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

监测小区域阿片类药物死亡率的地理人口趋势对告知预防性资源分配具有重要意义。估计小区域阿片类药物死亡率的一种常用方法是使用标准疾病制图方法,其中将高危人口估计值(分母)视为固定值。这种假设忽略了小区域人口估计的不确定性,可能会使风险估计产生偏差,并低估其不确定性。我们将贝叶斯空间伯克逊误差模型和贝叶斯空间经典误差模型与将分母视为固定的朴素方法进行比较。通过模拟,我们说明了被忽视的风险人群不确定性的潜在偏差。我们应用这些方法获得格鲁吉亚159个县的2020年阿片类药物死亡风险估计。评估不同方法在偏倚和不确定性方面的差异,可以提高小区域阿片类药物风险估计的准确性,指导公共卫生干预措施、政策和资源分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian spatial measurement error approach to incorporate heterogeneous population-at-risk uncertainty in estimating small-area opioid mortality rates
Monitoring small-area geographical population trends in opioid mortality has significant implications for informing preventative resource allocation. A common approach to estimating small-area opioid mortality uses a standard disease mapping method where population-at-risk estimates (denominators) are treated as fixed. This assumption ignores the uncertainty in small-area population estimates, potentially biasing risk estimates and underestimating their uncertainties. We compare a Bayesian Spatial Berkson Error model and a Bayesian Spatial Classical Error model to a naive approach that treats denominators as fixed. Using simulations, we illustrate potential bias from ignored population-at-risk uncertainty. We apply these methods to obtain 2020 opioid mortality risk estimates for 159 counties in Georgia. Assessing differences in bias and uncertainty across approaches can improve the accuracy of small-area opioid risk estimates, guiding public health interventions, policies, and resource allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信