Jakob Schröder , Tobias Fritsch , Bruno Ferrari , Mika León Altmann , Giovanni Bruno , Anastasiya Toenjes
{"title":"激光粉末床熔合:缺陷类型影响热等静压后再加热时临界孔隙度的再生长","authors":"Jakob Schröder , Tobias Fritsch , Bruno Ferrari , Mika León Altmann , Giovanni Bruno , Anastasiya Toenjes","doi":"10.1016/j.jmatprotec.2025.118839","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the remarkable product design flexibility offered by additive manufacturing (AM) techniques, such as laser powder bed fusion, AM processes are susceptible to the formation of defects. In this context, the control of process parameters and the application of post-processing treatments, such as hot isostatic pressing (HIP), are of paramount importance to achieve the desired mechanical properties. The present study investigates the effectiveness of HIP as a function of process parameters in laser powder bed fused Ti-6V-4Al (PBF-LB/Ti64) using X-ray computed tomography. The process parameters are modified to obtain reference samples with low porosity, lack of fusion defects, or keyhole porosity. In all instances, subsurface keyhole porosity was observed in the as-built parts. Moreover, it was found that the efficacy of pore closure is dependent on the specific defect type. In the case of low porosity and keyhole pores, HIP resulted in effective closure. Conversely, larger lack of fusion defects were not closed due to their interconnectivity and the entrapment of argon gas. Subsequent heat treatments above the β-transus temperature allowed the investigation of the impact of defect type on porosity re-growth. For the first time, we reveal that lack of fusion defects are affected by considerable pore re-growth during post-HIP heat treatments of PBF-LB/Ti64. Such phenomenon is driven by the increasing internal pore pressure and local creep deformation at high temperatures. In contrast, re-growth is limited in samples with low porosity or keyhole pores.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"340 ","pages":"Article 118839"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser powder bed fusion: Defect type influences critical porosity re-growth during reheating after hot isostatic pressing\",\"authors\":\"Jakob Schröder , Tobias Fritsch , Bruno Ferrari , Mika León Altmann , Giovanni Bruno , Anastasiya Toenjes\",\"doi\":\"10.1016/j.jmatprotec.2025.118839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the remarkable product design flexibility offered by additive manufacturing (AM) techniques, such as laser powder bed fusion, AM processes are susceptible to the formation of defects. In this context, the control of process parameters and the application of post-processing treatments, such as hot isostatic pressing (HIP), are of paramount importance to achieve the desired mechanical properties. The present study investigates the effectiveness of HIP as a function of process parameters in laser powder bed fused Ti-6V-4Al (PBF-LB/Ti64) using X-ray computed tomography. The process parameters are modified to obtain reference samples with low porosity, lack of fusion defects, or keyhole porosity. In all instances, subsurface keyhole porosity was observed in the as-built parts. Moreover, it was found that the efficacy of pore closure is dependent on the specific defect type. In the case of low porosity and keyhole pores, HIP resulted in effective closure. Conversely, larger lack of fusion defects were not closed due to their interconnectivity and the entrapment of argon gas. Subsequent heat treatments above the β-transus temperature allowed the investigation of the impact of defect type on porosity re-growth. For the first time, we reveal that lack of fusion defects are affected by considerable pore re-growth during post-HIP heat treatments of PBF-LB/Ti64. Such phenomenon is driven by the increasing internal pore pressure and local creep deformation at high temperatures. In contrast, re-growth is limited in samples with low porosity or keyhole pores.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"340 \",\"pages\":\"Article 118839\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013625001293\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625001293","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Laser powder bed fusion: Defect type influences critical porosity re-growth during reheating after hot isostatic pressing
Despite the remarkable product design flexibility offered by additive manufacturing (AM) techniques, such as laser powder bed fusion, AM processes are susceptible to the formation of defects. In this context, the control of process parameters and the application of post-processing treatments, such as hot isostatic pressing (HIP), are of paramount importance to achieve the desired mechanical properties. The present study investigates the effectiveness of HIP as a function of process parameters in laser powder bed fused Ti-6V-4Al (PBF-LB/Ti64) using X-ray computed tomography. The process parameters are modified to obtain reference samples with low porosity, lack of fusion defects, or keyhole porosity. In all instances, subsurface keyhole porosity was observed in the as-built parts. Moreover, it was found that the efficacy of pore closure is dependent on the specific defect type. In the case of low porosity and keyhole pores, HIP resulted in effective closure. Conversely, larger lack of fusion defects were not closed due to their interconnectivity and the entrapment of argon gas. Subsequent heat treatments above the β-transus temperature allowed the investigation of the impact of defect type on porosity re-growth. For the first time, we reveal that lack of fusion defects are affected by considerable pore re-growth during post-HIP heat treatments of PBF-LB/Ti64. Such phenomenon is driven by the increasing internal pore pressure and local creep deformation at high temperatures. In contrast, re-growth is limited in samples with low porosity or keyhole pores.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.