Yunli Xu , Xuwen Da , Yao Jian , Wanpeng Zhou , Aifeng Wu , Yao Wu , Yatong Peng , Xiulian Liu , Yu Shi , Xuesong Wang , Qianxiong Zhou
{"title":"带有光敏配体的高正电荷 Ru(II) 复合物可选择性地高效光灭活细胞内的金黄色葡萄球菌","authors":"Yunli Xu , Xuwen Da , Yao Jian , Wanpeng Zhou , Aifeng Wu , Yao Wu , Yatong Peng , Xiulian Liu , Yu Shi , Xuesong Wang , Qianxiong Zhou","doi":"10.1016/j.jinorgbio.2025.112908","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the protection afforded by host cells, intracellular <em>Staphylococcus aureus</em> (<em>S. aureus</em>), particularly methicillin-resistant <em>S. aureus</em> (MRSA), poses a significantly greater challenge to eliminate compared to the extracellular counterparts. It is highly desirable to develop novel antibacterial agents which are capable of selectively and efficiently eradicating intracellular bacteria, including drug-resistant strains, while being less prone to induce bacterial resistance. In this work, two Ru(II) complexes (Ru1 and Ru2) with photo-labile ligands were designed and synthesized. Both Ru1 and Ru2 could covalently bind to DNA after photo-induced ligand dissociation. Compared to Ru1, the incorporation of a triphenylamine group adorned with two positively charged cationic pyridine units significantly boosts the DNA binding constant, bacterial binding/uptake level, and subsequently, the antibacterial activity of Ru2. Ru2 could selectively photo-inactivate intracellular <em>S. aureus</em> and MRSA, being more efficient than vancomycin both <em>in vitro</em> and <em>in vivo</em>. Interestingly, after 20 days' treatment at sublethal concentrations, <em>S. aureus</em> cells exhibited no obvious drug resistance towards Ru2 upon irradiation. Such appealing results may provide new sights for developing novel antibacterial agents against intractable intracellular pathogens and also prevalent drug resistance.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"268 ","pages":"Article 112908"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly positively charged Ru(II) complex with photo-labile ligands for selective and efficient photo-inactivation of intracellular Staphylococcus aureus\",\"authors\":\"Yunli Xu , Xuwen Da , Yao Jian , Wanpeng Zhou , Aifeng Wu , Yao Wu , Yatong Peng , Xiulian Liu , Yu Shi , Xuesong Wang , Qianxiong Zhou\",\"doi\":\"10.1016/j.jinorgbio.2025.112908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the protection afforded by host cells, intracellular <em>Staphylococcus aureus</em> (<em>S. aureus</em>), particularly methicillin-resistant <em>S. aureus</em> (MRSA), poses a significantly greater challenge to eliminate compared to the extracellular counterparts. It is highly desirable to develop novel antibacterial agents which are capable of selectively and efficiently eradicating intracellular bacteria, including drug-resistant strains, while being less prone to induce bacterial resistance. In this work, two Ru(II) complexes (Ru1 and Ru2) with photo-labile ligands were designed and synthesized. Both Ru1 and Ru2 could covalently bind to DNA after photo-induced ligand dissociation. Compared to Ru1, the incorporation of a triphenylamine group adorned with two positively charged cationic pyridine units significantly boosts the DNA binding constant, bacterial binding/uptake level, and subsequently, the antibacterial activity of Ru2. Ru2 could selectively photo-inactivate intracellular <em>S. aureus</em> and MRSA, being more efficient than vancomycin both <em>in vitro</em> and <em>in vivo</em>. Interestingly, after 20 days' treatment at sublethal concentrations, <em>S. aureus</em> cells exhibited no obvious drug resistance towards Ru2 upon irradiation. Such appealing results may provide new sights for developing novel antibacterial agents against intractable intracellular pathogens and also prevalent drug resistance.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"268 \",\"pages\":\"Article 112908\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013425000881\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425000881","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A highly positively charged Ru(II) complex with photo-labile ligands for selective and efficient photo-inactivation of intracellular Staphylococcus aureus
Due to the protection afforded by host cells, intracellular Staphylococcus aureus (S. aureus), particularly methicillin-resistant S. aureus (MRSA), poses a significantly greater challenge to eliminate compared to the extracellular counterparts. It is highly desirable to develop novel antibacterial agents which are capable of selectively and efficiently eradicating intracellular bacteria, including drug-resistant strains, while being less prone to induce bacterial resistance. In this work, two Ru(II) complexes (Ru1 and Ru2) with photo-labile ligands were designed and synthesized. Both Ru1 and Ru2 could covalently bind to DNA after photo-induced ligand dissociation. Compared to Ru1, the incorporation of a triphenylamine group adorned with two positively charged cationic pyridine units significantly boosts the DNA binding constant, bacterial binding/uptake level, and subsequently, the antibacterial activity of Ru2. Ru2 could selectively photo-inactivate intracellular S. aureus and MRSA, being more efficient than vancomycin both in vitro and in vivo. Interestingly, after 20 days' treatment at sublethal concentrations, S. aureus cells exhibited no obvious drug resistance towards Ru2 upon irradiation. Such appealing results may provide new sights for developing novel antibacterial agents against intractable intracellular pathogens and also prevalent drug resistance.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.