双方井流体状态方程的发展

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Mohammad Hossein Hadipanah, Seyed Hossein Mazloumi
{"title":"双方井流体状态方程的发展","authors":"Mohammad Hossein Hadipanah,&nbsp;Seyed Hossein Mazloumi","doi":"10.1016/j.fluid.2025.114437","DOIUrl":null,"url":null,"abstract":"<div><div>A double square-well potential function is proposed to describe the interaction between unbounded particles. This model is constructed based on the Lennard-Jones potential function and has three adjustable parameters. Based on the two-layers local composition model, a coordination number model for this double square-well fluid is developed and then by using the generalized van der Waals partition function a new expression for the attractive part of equation of state is derived. Two new equations of state are presented by sum of the attractive term and repulsive expressions of Carnahan-Starling and van der Waals. These models have three adjustable parameters, which are obtained by simultaneously fitting vapor pressures and liquid densities of pure substances. The capability of these two models in correlation of the vapour pressure and liquid density and in prediction of the vapour molar volume and heat of vaporization of pure compounds is investigated. Good results obtained especially with the new EOS in which Carnahan-Starling repulsive term has been used. The results of this EOS are excellent even for large molecules such as long- chain alkanes from C<sub>10</sub> to C<sub>20</sub>.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"596 ","pages":"Article 114437"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of equation of state for a double square-well fluid\",\"authors\":\"Mohammad Hossein Hadipanah,&nbsp;Seyed Hossein Mazloumi\",\"doi\":\"10.1016/j.fluid.2025.114437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A double square-well potential function is proposed to describe the interaction between unbounded particles. This model is constructed based on the Lennard-Jones potential function and has three adjustable parameters. Based on the two-layers local composition model, a coordination number model for this double square-well fluid is developed and then by using the generalized van der Waals partition function a new expression for the attractive part of equation of state is derived. Two new equations of state are presented by sum of the attractive term and repulsive expressions of Carnahan-Starling and van der Waals. These models have three adjustable parameters, which are obtained by simultaneously fitting vapor pressures and liquid densities of pure substances. The capability of these two models in correlation of the vapour pressure and liquid density and in prediction of the vapour molar volume and heat of vaporization of pure compounds is investigated. Good results obtained especially with the new EOS in which Carnahan-Starling repulsive term has been used. The results of this EOS are excellent even for large molecules such as long- chain alkanes from C<sub>10</sub> to C<sub>20</sub>.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"596 \",\"pages\":\"Article 114437\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381225001074\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001074","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of equation of state for a double square-well fluid
A double square-well potential function is proposed to describe the interaction between unbounded particles. This model is constructed based on the Lennard-Jones potential function and has three adjustable parameters. Based on the two-layers local composition model, a coordination number model for this double square-well fluid is developed and then by using the generalized van der Waals partition function a new expression for the attractive part of equation of state is derived. Two new equations of state are presented by sum of the attractive term and repulsive expressions of Carnahan-Starling and van der Waals. These models have three adjustable parameters, which are obtained by simultaneously fitting vapor pressures and liquid densities of pure substances. The capability of these two models in correlation of the vapour pressure and liquid density and in prediction of the vapour molar volume and heat of vaporization of pure compounds is investigated. Good results obtained especially with the new EOS in which Carnahan-Starling repulsive term has been used. The results of this EOS are excellent even for large molecules such as long- chain alkanes from C10 to C20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信