Ran Wang , Xiangjing Li , Li Long, Min Li, Huijing Chen, Han Zhang, Wei Ruan, Hong Zhang, Pengwu Zheng, Shan Xu
{"title":"含有DAAP片段的新型ALK抑制剂:合理的药物设计和抗肿瘤活性研究","authors":"Ran Wang , Xiangjing Li , Li Long, Min Li, Huijing Chen, Han Zhang, Wei Ruan, Hong Zhang, Pengwu Zheng, Shan Xu","doi":"10.1016/j.bioorg.2025.108416","DOIUrl":null,"url":null,"abstract":"<div><div>Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor subfamily, involved in cellular signaling pathways associated with insulin. While ALK gene remains inactive in normal human tissues, it exhibits high expression specifically in the central nervous system. However, dysregulation of the ALK gene has been implicated in non-small cell lung cancer (NSCLC) development. Although commercially available ALK inhibitors demonstrate favorable clinical efficacy against most Ceritinib-resistant mutants, they exhibit resistance towards G1202R mutants. Therefore, developing novel ALK inhibitors is crucial for addressing drug resistance in patients. We designed and synthesized 48 novel 2,4-diarylpyrimidine-based ALK inhibitors and investigated their antitumor activities. Among them, Ld-10 showed significant inhibitory activity against ALK kinase with an IC<sub>50</sub> value of 1135 nM and demonstrated excellent antiproliferative activity against lung cancer cells H2228 with an IC<sub>50</sub> value of 1.35 ± 0.13 μM. To further validate the antitumor potential of Ld-10, we conducted a series of in vitro pharmacological experiments. These included a hemolysis assay to confirm its low toxicity profile, an AO assay, a JC-1 staining assay, and a Calcein-AM/PI cell double staining assay for assessing apoptosis induction. Additionally, we performed dose-dependent arrest at G0/G1 phase to evaluate inhibition of cell growth and carried out cell cycle analysis and cloning experiments to provide evidence for significant tumor growth inhibition by compound Ld-10. In vivo pharmacological experiments demonstrated effective tumor growth inhibition without any significant toxic effects on mouse organs caused by Ld-10 administration. Based on these comprehensive findings from our experimental investigations, it can be concluded that Ld-10 holds promising potential as a novel ALK inhibitor.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"160 ","pages":"Article 108416"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel ALK inhibitors containing DAAP fragments: Rational drug design and anti-tumor activity research\",\"authors\":\"Ran Wang , Xiangjing Li , Li Long, Min Li, Huijing Chen, Han Zhang, Wei Ruan, Hong Zhang, Pengwu Zheng, Shan Xu\",\"doi\":\"10.1016/j.bioorg.2025.108416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor subfamily, involved in cellular signaling pathways associated with insulin. While ALK gene remains inactive in normal human tissues, it exhibits high expression specifically in the central nervous system. However, dysregulation of the ALK gene has been implicated in non-small cell lung cancer (NSCLC) development. Although commercially available ALK inhibitors demonstrate favorable clinical efficacy against most Ceritinib-resistant mutants, they exhibit resistance towards G1202R mutants. Therefore, developing novel ALK inhibitors is crucial for addressing drug resistance in patients. We designed and synthesized 48 novel 2,4-diarylpyrimidine-based ALK inhibitors and investigated their antitumor activities. Among them, Ld-10 showed significant inhibitory activity against ALK kinase with an IC<sub>50</sub> value of 1135 nM and demonstrated excellent antiproliferative activity against lung cancer cells H2228 with an IC<sub>50</sub> value of 1.35 ± 0.13 μM. To further validate the antitumor potential of Ld-10, we conducted a series of in vitro pharmacological experiments. These included a hemolysis assay to confirm its low toxicity profile, an AO assay, a JC-1 staining assay, and a Calcein-AM/PI cell double staining assay for assessing apoptosis induction. Additionally, we performed dose-dependent arrest at G0/G1 phase to evaluate inhibition of cell growth and carried out cell cycle analysis and cloning experiments to provide evidence for significant tumor growth inhibition by compound Ld-10. In vivo pharmacological experiments demonstrated effective tumor growth inhibition without any significant toxic effects on mouse organs caused by Ld-10 administration. Based on these comprehensive findings from our experimental investigations, it can be concluded that Ld-10 holds promising potential as a novel ALK inhibitor.</div></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"160 \",\"pages\":\"Article 108416\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045206825002962\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825002962","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Novel ALK inhibitors containing DAAP fragments: Rational drug design and anti-tumor activity research
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor subfamily, involved in cellular signaling pathways associated with insulin. While ALK gene remains inactive in normal human tissues, it exhibits high expression specifically in the central nervous system. However, dysregulation of the ALK gene has been implicated in non-small cell lung cancer (NSCLC) development. Although commercially available ALK inhibitors demonstrate favorable clinical efficacy against most Ceritinib-resistant mutants, they exhibit resistance towards G1202R mutants. Therefore, developing novel ALK inhibitors is crucial for addressing drug resistance in patients. We designed and synthesized 48 novel 2,4-diarylpyrimidine-based ALK inhibitors and investigated their antitumor activities. Among them, Ld-10 showed significant inhibitory activity against ALK kinase with an IC50 value of 1135 nM and demonstrated excellent antiproliferative activity against lung cancer cells H2228 with an IC50 value of 1.35 ± 0.13 μM. To further validate the antitumor potential of Ld-10, we conducted a series of in vitro pharmacological experiments. These included a hemolysis assay to confirm its low toxicity profile, an AO assay, a JC-1 staining assay, and a Calcein-AM/PI cell double staining assay for assessing apoptosis induction. Additionally, we performed dose-dependent arrest at G0/G1 phase to evaluate inhibition of cell growth and carried out cell cycle analysis and cloning experiments to provide evidence for significant tumor growth inhibition by compound Ld-10. In vivo pharmacological experiments demonstrated effective tumor growth inhibition without any significant toxic effects on mouse organs caused by Ld-10 administration. Based on these comprehensive findings from our experimental investigations, it can be concluded that Ld-10 holds promising potential as a novel ALK inhibitor.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.