新型半Heusler合金VPdZ (Z = Ge, Sn)的热力学、自旋电子学和光电子应用的第一性原理分析

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ashwani Kumar , Shyam Lal Gupta , Sumit Kumar , Anupam , Diwaker
{"title":"新型半Heusler合金VPdZ (Z = Ge, Sn)的热力学、自旋电子学和光电子应用的第一性原理分析","authors":"Ashwani Kumar ,&nbsp;Shyam Lal Gupta ,&nbsp;Sumit Kumar ,&nbsp;Anupam ,&nbsp;Diwaker","doi":"10.1016/j.matchemphys.2025.130770","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employ first principles methods based on density functional theory (DFT) to explore the structural stability, electronic, mechanical, optical, thermodynamic properties, and lattice dynamics of VPdZ (Z = Ge, Sn) half Heusler alloys. Our structural analysis indicates that these alloys are stable in a ferromagnetic phase and fall under the cubic space group number (216 F-43 m). The electronic band structure shows that both alloys exhibit half-metallic behavior, with indirect energy gaps of 0.651 eV for VPdGe and 0.462 eV for VPdSn in the spin-down channel. The calculated magnetic moments align well with the Slater Pauling rule. Mechanical properties, including Pugh’s ratio (B/G), suggest that VPdGe is ductile, while VPdSn is brittle. Among the VPdZ (Z = Ge, Sn) half Heusler alloys, VPdSn stands out for its excellent photon conductivity at low energy, making it a promising candidate for optoelectronic applications. Lattice dynamics studies confirm the dynamic stability of these materials, reinforcing their potential for future use in solid-state electronics and renewable energy technologies.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"340 ","pages":"Article 130770"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First principles analysis of novel half Heusler alloys VPdZ (Z = Ge, Sn) for thermodynamic, spintronics and optoelectronic applications\",\"authors\":\"Ashwani Kumar ,&nbsp;Shyam Lal Gupta ,&nbsp;Sumit Kumar ,&nbsp;Anupam ,&nbsp;Diwaker\",\"doi\":\"10.1016/j.matchemphys.2025.130770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we employ first principles methods based on density functional theory (DFT) to explore the structural stability, electronic, mechanical, optical, thermodynamic properties, and lattice dynamics of VPdZ (Z = Ge, Sn) half Heusler alloys. Our structural analysis indicates that these alloys are stable in a ferromagnetic phase and fall under the cubic space group number (216 F-43 m). The electronic band structure shows that both alloys exhibit half-metallic behavior, with indirect energy gaps of 0.651 eV for VPdGe and 0.462 eV for VPdSn in the spin-down channel. The calculated magnetic moments align well with the Slater Pauling rule. Mechanical properties, including Pugh’s ratio (B/G), suggest that VPdGe is ductile, while VPdSn is brittle. Among the VPdZ (Z = Ge, Sn) half Heusler alloys, VPdSn stands out for its excellent photon conductivity at low energy, making it a promising candidate for optoelectronic applications. Lattice dynamics studies confirm the dynamic stability of these materials, reinforcing their potential for future use in solid-state electronics and renewable energy technologies.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"340 \",\"pages\":\"Article 130770\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025405842500416X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025405842500416X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们采用基于密度泛函理论(DFT)的第一性原理方法来研究VPdZ (Z = Ge, Sn)半Heusler合金的结构稳定性、电子、机械、光学、热力学性质和晶格动力学。结构分析表明,这两种合金均稳定在铁磁相中,属于立方空间群数(216 F-43 m)。电子能带结构表明,两种合金均表现出半金属行为,VPdGe和VPdSn在自旋下通道中的间接能隙分别为0.651 eV和0.462 eV。计算得到的磁矩与斯莱特-鲍林规则一致。包括皮尤比(B/G)在内的力学性能表明,VPdGe具有延展性,而VPdSn具有脆性。在VPdZ (Z = Ge, Sn)半Heusler合金中,VPdSn因其在低能量下优异的光子导电性而脱颖而出,使其成为光电应用的有前途的候选材料。晶格动力学研究证实了这些材料的动态稳定性,增强了它们在固态电子和可再生能源技术中未来应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First principles analysis of novel half Heusler alloys VPdZ (Z = Ge, Sn) for thermodynamic, spintronics and optoelectronic applications

First principles analysis of novel half Heusler alloys VPdZ (Z = Ge, Sn) for thermodynamic, spintronics and optoelectronic applications
In this study, we employ first principles methods based on density functional theory (DFT) to explore the structural stability, electronic, mechanical, optical, thermodynamic properties, and lattice dynamics of VPdZ (Z = Ge, Sn) half Heusler alloys. Our structural analysis indicates that these alloys are stable in a ferromagnetic phase and fall under the cubic space group number (216 F-43 m). The electronic band structure shows that both alloys exhibit half-metallic behavior, with indirect energy gaps of 0.651 eV for VPdGe and 0.462 eV for VPdSn in the spin-down channel. The calculated magnetic moments align well with the Slater Pauling rule. Mechanical properties, including Pugh’s ratio (B/G), suggest that VPdGe is ductile, while VPdSn is brittle. Among the VPdZ (Z = Ge, Sn) half Heusler alloys, VPdSn stands out for its excellent photon conductivity at low energy, making it a promising candidate for optoelectronic applications. Lattice dynamics studies confirm the dynamic stability of these materials, reinforcing their potential for future use in solid-state electronics and renewable energy technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信