Leah Costello , Anna Zetterström , Peter Gardner , Jose Luis Crespo-Picazo , Cyrill Bussy , Ian Kane , Holly A. Shiels
{"title":"微塑料积聚在地中海红海龟的所有主要器官中(Caretta Caretta)","authors":"Leah Costello , Anna Zetterström , Peter Gardner , Jose Luis Crespo-Picazo , Cyrill Bussy , Ian Kane , Holly A. Shiels","doi":"10.1016/j.marenvres.2025.107100","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) are a pervasive marine environmental pollutant, posing a serious threat to marine ecosystems and organisms at all trophic levels. Plastic ingestion is well documented in marine turtles, and loggerhead sea turtles (<em>Caretta caretta</em>) have been identified as an indicator species to monitor MP pollution globally. Our understanding of the translocation and bioaccumulation potential of MPs beyond the gastrointestinal tract is, however, limited. Here we demonstrate that MP translocation occurs in these marine reptiles and present a comprehensive analysis of MP accumulation in body tissues of 10 stranded Mediterranean loggerhead turtles including the kidney, liver, spleen, heart, skeletal muscle, subcutaneous fat, stomach, intestine, and reproductive organs. Foreign microparticles were identified in 98.8 % of all samples (∼70 % being MPs) and were significantly concentrated in the reproductive organs followed by the heart. Raman spectroscopy revealed that polypropylene, cotton fibres, and polyethylene were the most common microparticle types, and optical photothermal infrared (O-PTIR) spectroscopy provided direct visualisation of cotton microfibres embedded in loggerhead heart tissue. Future studies should determine the biological impact of MP bioaccumulation in sea turtle organs, to fully appreciate the impacts of these anthropogenic pollutants on protected and vulnerable populations worldwide.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"208 ","pages":"Article 107100"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics accumulate in all major organs of the mediterranean loggerhead sea turtle (Caretta caretta)\",\"authors\":\"Leah Costello , Anna Zetterström , Peter Gardner , Jose Luis Crespo-Picazo , Cyrill Bussy , Ian Kane , Holly A. Shiels\",\"doi\":\"10.1016/j.marenvres.2025.107100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastics (MPs) are a pervasive marine environmental pollutant, posing a serious threat to marine ecosystems and organisms at all trophic levels. Plastic ingestion is well documented in marine turtles, and loggerhead sea turtles (<em>Caretta caretta</em>) have been identified as an indicator species to monitor MP pollution globally. Our understanding of the translocation and bioaccumulation potential of MPs beyond the gastrointestinal tract is, however, limited. Here we demonstrate that MP translocation occurs in these marine reptiles and present a comprehensive analysis of MP accumulation in body tissues of 10 stranded Mediterranean loggerhead turtles including the kidney, liver, spleen, heart, skeletal muscle, subcutaneous fat, stomach, intestine, and reproductive organs. Foreign microparticles were identified in 98.8 % of all samples (∼70 % being MPs) and were significantly concentrated in the reproductive organs followed by the heart. Raman spectroscopy revealed that polypropylene, cotton fibres, and polyethylene were the most common microparticle types, and optical photothermal infrared (O-PTIR) spectroscopy provided direct visualisation of cotton microfibres embedded in loggerhead heart tissue. Future studies should determine the biological impact of MP bioaccumulation in sea turtle organs, to fully appreciate the impacts of these anthropogenic pollutants on protected and vulnerable populations worldwide.</div></div>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":\"208 \",\"pages\":\"Article 107100\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141113625001576\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113625001576","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microplastics accumulate in all major organs of the mediterranean loggerhead sea turtle (Caretta caretta)
Microplastics (MPs) are a pervasive marine environmental pollutant, posing a serious threat to marine ecosystems and organisms at all trophic levels. Plastic ingestion is well documented in marine turtles, and loggerhead sea turtles (Caretta caretta) have been identified as an indicator species to monitor MP pollution globally. Our understanding of the translocation and bioaccumulation potential of MPs beyond the gastrointestinal tract is, however, limited. Here we demonstrate that MP translocation occurs in these marine reptiles and present a comprehensive analysis of MP accumulation in body tissues of 10 stranded Mediterranean loggerhead turtles including the kidney, liver, spleen, heart, skeletal muscle, subcutaneous fat, stomach, intestine, and reproductive organs. Foreign microparticles were identified in 98.8 % of all samples (∼70 % being MPs) and were significantly concentrated in the reproductive organs followed by the heart. Raman spectroscopy revealed that polypropylene, cotton fibres, and polyethylene were the most common microparticle types, and optical photothermal infrared (O-PTIR) spectroscopy provided direct visualisation of cotton microfibres embedded in loggerhead heart tissue. Future studies should determine the biological impact of MP bioaccumulation in sea turtle organs, to fully appreciate the impacts of these anthropogenic pollutants on protected and vulnerable populations worldwide.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.