麦克斯韦-克莱因-戈登方程与散射数据

IF 1.5 1区 数学 Q1 MATHEMATICS
Wei Dai , He Mei , Dongyi Wei , Shiwu Yang
{"title":"麦克斯韦-克莱因-戈登方程与散射数据","authors":"Wei Dai ,&nbsp;He Mei ,&nbsp;Dongyi Wei ,&nbsp;Shiwu Yang","doi":"10.1016/j.aim.2025.110271","DOIUrl":null,"url":null,"abstract":"<div><div>It has been shown in <span><span>[59]</span></span> that general large solutions to the Cauchy problem for the Maxwell-Klein-Gordon system (MKG) in the Minkowski space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup></math></span> decay like linear solutions. One hence can define the associated radiation field on the future null infinity as the limit of <span><math><mo>(</mo><mi>r</mi><munder><mrow><mi>α</mi></mrow><mo>_</mo></munder><mo>,</mo><mi>r</mi><mi>ϕ</mi><mo>)</mo></math></span> along the out going null geodesics. In this paper, we show the existence of a global solution to the MKG system which scatters to any given sufficiently localized radiation field with arbitrarily large size and total charge. The result follows by studying the characteristic initial value problem for the MKG system with general large data by using gauge invariant vector field method. We in particular extend the small data result of He in <span><span>[35]</span></span> to a class of general large data.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"471 ","pages":"Article 110271"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Maxwell-Klein-Gordon equation with scattering data\",\"authors\":\"Wei Dai ,&nbsp;He Mei ,&nbsp;Dongyi Wei ,&nbsp;Shiwu Yang\",\"doi\":\"10.1016/j.aim.2025.110271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It has been shown in <span><span>[59]</span></span> that general large solutions to the Cauchy problem for the Maxwell-Klein-Gordon system (MKG) in the Minkowski space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup></math></span> decay like linear solutions. One hence can define the associated radiation field on the future null infinity as the limit of <span><math><mo>(</mo><mi>r</mi><munder><mrow><mi>α</mi></mrow><mo>_</mo></munder><mo>,</mo><mi>r</mi><mi>ϕ</mi><mo>)</mo></math></span> along the out going null geodesics. In this paper, we show the existence of a global solution to the MKG system which scatters to any given sufficiently localized radiation field with arbitrarily large size and total charge. The result follows by studying the characteristic initial value problem for the MKG system with general large data by using gauge invariant vector field method. We in particular extend the small data result of He in <span><span>[35]</span></span> to a class of general large data.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"471 \",\"pages\":\"Article 110271\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001690\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001690","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在[59]中已经证明了在Minkowski空间R1+3中麦克斯韦-克莱因-戈登系统(MKG)的Cauchy问题的一般大解与线性解一样衰减。因此,可以将未来零无穷大上的相关辐射场定义为(rα_, rφ)沿出线零测地线的极限。本文证明了MKG系统的全局解的存在性,该系统散射到任意大尺寸和总电荷的给定充分局域辐射场。利用规范不变向量场法研究了具有一般大数据的MKG系统的特征初值问题。我们特别将[35]中He的小数据结果推广到一类一般的大数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Maxwell-Klein-Gordon equation with scattering data
It has been shown in [59] that general large solutions to the Cauchy problem for the Maxwell-Klein-Gordon system (MKG) in the Minkowski space R1+3 decay like linear solutions. One hence can define the associated radiation field on the future null infinity as the limit of (rα_,rϕ) along the out going null geodesics. In this paper, we show the existence of a global solution to the MKG system which scatters to any given sufficiently localized radiation field with arbitrarily large size and total charge. The result follows by studying the characteristic initial value problem for the MKG system with general large data by using gauge invariant vector field method. We in particular extend the small data result of He in [35] to a class of general large data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信