纳米线的解析描述:变形纤锌矿结构截面以匹配任意凸形状

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Dirk König, Sean C. Smith
{"title":"纳米线的解析描述:变形纤锌矿结构截面以匹配任意凸形状","authors":"Dirk König, Sean C. Smith","doi":"10.1002/adts.202400951","DOIUrl":null,"url":null,"abstract":"Setting out from previous work, an analytic description of regular wurtzite- (w-) structure nanowires (NWires) is extended by introducing morphing terms to describe arbitrary convex cross sections featuring linear interfaces as encountered in experiment. Add-on terms to the existing number series of regular cross sections are provided with their respective running indices, yielding the required flexibility for cross section morphing. The main variables are the number of NWire atoms <span data-altimg=\"/cms/asset/68417cb0-5405-467d-b659-6e76e4691c05/adts202400951-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"420\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400951-math-0001.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript upper W i r e\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.085em;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400951:adts202400951-math-0001\" display=\"inline\" location=\"graphic/adts202400951-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript upper W i r e\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">N</mi><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">Wire</mi></msub>$N_{\\mathrm{Wire}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, bonds between NWire atoms <span data-altimg=\"/cms/asset/1f1d3266-d772-4ae1-a323-32a07be06fd7/adts202400951-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"421\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400951-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript b n d\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.085em;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400951:adts202400951-math-0002\" display=\"inline\" location=\"graphic/adts202400951-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript b n d\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">N</mi><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">bnd</mi></msub>$N\\mathrm{_{bnd}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and interface bonds <span data-altimg=\"/cms/asset/087111bc-0e9f-407f-b7af-092b9743f8aa/adts202400951-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"422\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400951-math-0003.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript upper I upper F\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.085em;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400951:adts202400951-math-0003\" display=\"inline\" location=\"graphic/adts202400951-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript upper I upper F\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">N</mi><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">IF</mi></msub>$N\\mathrm{_{IF}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> as a function of NWire size and shape, complemented by other basic geometric variables such as specific lengths of interface facets, as well as widths, heights, and total area of the cross section. Cross section morphing is demonstrated for the three high symmetry w-NWires with low-index faceting frequently occurring in NWire processing. The fundamental insights revealed here offer a universal gauge and thus enable major advancements in data interpretation and understanding of above-mentioned w-structure based NWires with arbitrary convex cross sections. As a corroborating example, a precise description of an irregular w-GaAs/w-Ge core/shell NWire cross section is given, whereby a radially changing lattice constant can be included.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Description of Nanowires: Morphing Wurtzite Structure Cross Sections to Match Arbitrary Convex Shapes\",\"authors\":\"Dirk König, Sean C. Smith\",\"doi\":\"10.1002/adts.202400951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Setting out from previous work, an analytic description of regular wurtzite- (w-) structure nanowires (NWires) is extended by introducing morphing terms to describe arbitrary convex cross sections featuring linear interfaces as encountered in experiment. Add-on terms to the existing number series of regular cross sections are provided with their respective running indices, yielding the required flexibility for cross section morphing. The main variables are the number of NWire atoms <span data-altimg=\\\"/cms/asset/68417cb0-5405-467d-b659-6e76e4691c05/adts202400951-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"420\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400951-math-0001.png\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript upper W i r e\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.085em;\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400951:adts202400951-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400951-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript upper W i r e\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">N</mi><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">Wire</mi></msub>$N_{\\\\mathrm{Wire}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, bonds between NWire atoms <span data-altimg=\\\"/cms/asset/1f1d3266-d772-4ae1-a323-32a07be06fd7/adts202400951-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"421\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400951-math-0002.png\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript b n d\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.085em;\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400951:adts202400951-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400951-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript b n d\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">N</mi><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">bnd</mi></msub>$N\\\\mathrm{_{bnd}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and interface bonds <span data-altimg=\\\"/cms/asset/087111bc-0e9f-407f-b7af-092b9743f8aa/adts202400951-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"422\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400951-math-0003.png\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript upper I upper F\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.085em;\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400951:adts202400951-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400951-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript upper I upper F\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">N</mi><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">IF</mi></msub>$N\\\\mathrm{_{IF}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> as a function of NWire size and shape, complemented by other basic geometric variables such as specific lengths of interface facets, as well as widths, heights, and total area of the cross section. Cross section morphing is demonstrated for the three high symmetry w-NWires with low-index faceting frequently occurring in NWire processing. The fundamental insights revealed here offer a universal gauge and thus enable major advancements in data interpretation and understanding of above-mentioned w-structure based NWires with arbitrary convex cross sections. As a corroborating example, a precise description of an irregular w-GaAs/w-Ge core/shell NWire cross section is given, whereby a radially changing lattice constant can be included.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400951\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400951","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从之前的工作出发,通过引入变形术语来描述实验中遇到的具有线性界面的任意凸截面,扩展了规则纤锌矿(w-)结构纳米线(NWires)的解析描述。为现有的规则截面系列提供了附加条款,并提供了各自的运行指标,从而为截面变形提供了所需的灵活性。主要变量是NWire原子数NWire$N_{\mathrm{Wire}}$, NWire原子间的键Nbnd$N\mathrm{_{bnd}}$和界面键NIF$N\mathrm{_{IF}}$,作为NWire尺寸和形状的函数,补充了其他基本几何变量,如界面面的特定长度,以及宽度,高度和截面的总面积。研究了三种高对称w-NWire的截面变形,并证明了在NWire加工中经常出现的低指数切面。本文揭示的基本见解提供了一种通用标准,从而使上述任意凸截面的基于w结构的NWires的数据解释和理解取得了重大进展。作为一个确证的例子,给出了不规则w-GaAs/w-Ge核/壳NWire截面的精确描述,其中可以包含径向变化的晶格常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analytical Description of Nanowires: Morphing Wurtzite Structure Cross Sections to Match Arbitrary Convex Shapes

Analytical Description of Nanowires: Morphing Wurtzite Structure Cross Sections to Match Arbitrary Convex Shapes
Setting out from previous work, an analytic description of regular wurtzite- (w-) structure nanowires (NWires) is extended by introducing morphing terms to describe arbitrary convex cross sections featuring linear interfaces as encountered in experiment. Add-on terms to the existing number series of regular cross sections are provided with their respective running indices, yielding the required flexibility for cross section morphing. The main variables are the number of NWire atoms NWire$N_{\mathrm{Wire}}$, bonds between NWire atoms Nbnd$N\mathrm{_{bnd}}$ and interface bonds NIF$N\mathrm{_{IF}}$ as a function of NWire size and shape, complemented by other basic geometric variables such as specific lengths of interface facets, as well as widths, heights, and total area of the cross section. Cross section morphing is demonstrated for the three high symmetry w-NWires with low-index faceting frequently occurring in NWire processing. The fundamental insights revealed here offer a universal gauge and thus enable major advancements in data interpretation and understanding of above-mentioned w-structure based NWires with arbitrary convex cross sections. As a corroborating example, a precise description of an irregular w-GaAs/w-Ge core/shell NWire cross section is given, whereby a radially changing lattice constant can be included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信