Riccardo Cioli, Elisa Ercolessi, Matteo Ippoliti, Xhek Turkeshi, Lorenzo Piroli
{"title":"浅阴影的近似反向测量通道","authors":"Riccardo Cioli, Elisa Ercolessi, Matteo Ippoliti, Xhek Turkeshi, Lorenzo Piroli","doi":"10.22331/q-2025-04-08-1698","DOIUrl":null,"url":null,"abstract":"Classical shadows are a versatile tool to probe many-body quantum systems, consisting of a combination of randomised measurements and classical post-processing computations. In a recently introduced version of the protocol, the randomization step is performed via unitary circuits of variable depth $t$, defining the so-called shallow shadows. For sufficiently large $t$, this approach allows one to get around the use of non-local unitaries to probe global properties such as the fidelity with respect to a target state or the purity. Still, shallow shadows involve the inversion of a many-body map, the measurement channel, which requires non-trivial computations in the post-processing step, thus limiting its applicability when the number of qubits $N$ is large. In this work, we put forward a simple approximate post-processing scheme where the infinite-depth inverse channel is applied to the finite-depth classical shadows and study its performance for fidelity and purity estimation. The scheme allows for different circuit connectivity, as we illustrate for geometrically local circuits in one and two spatial dimensions and geometrically non-local circuits made of two-qubit gates. For the fidelity, we find that the resulting estimator coincides with a known linear cross-entropy, achieving an arbitrary small approximation error $\\delta$ at depth $t=O(\\log (N/\\delta))$ (independent of the circuit connectivity). For the purity, we show that the estimator becomes accurate at a depth $O(N)$. In addition, at those depths, the variances of both the fidelity and purity estimators display the same scaling with $N$ as in the case of global random unitaries. We establish these bounds by analytic arguments and extensive numerical computations in several cases of interest. Our work extends the applicability of shallow shadows to large system sizes and general circuit connectivity.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"89 1","pages":"1698"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate inverse measurement channel for shallow shadows\",\"authors\":\"Riccardo Cioli, Elisa Ercolessi, Matteo Ippoliti, Xhek Turkeshi, Lorenzo Piroli\",\"doi\":\"10.22331/q-2025-04-08-1698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical shadows are a versatile tool to probe many-body quantum systems, consisting of a combination of randomised measurements and classical post-processing computations. In a recently introduced version of the protocol, the randomization step is performed via unitary circuits of variable depth $t$, defining the so-called shallow shadows. For sufficiently large $t$, this approach allows one to get around the use of non-local unitaries to probe global properties such as the fidelity with respect to a target state or the purity. Still, shallow shadows involve the inversion of a many-body map, the measurement channel, which requires non-trivial computations in the post-processing step, thus limiting its applicability when the number of qubits $N$ is large. In this work, we put forward a simple approximate post-processing scheme where the infinite-depth inverse channel is applied to the finite-depth classical shadows and study its performance for fidelity and purity estimation. The scheme allows for different circuit connectivity, as we illustrate for geometrically local circuits in one and two spatial dimensions and geometrically non-local circuits made of two-qubit gates. For the fidelity, we find that the resulting estimator coincides with a known linear cross-entropy, achieving an arbitrary small approximation error $\\\\delta$ at depth $t=O(\\\\log (N/\\\\delta))$ (independent of the circuit connectivity). For the purity, we show that the estimator becomes accurate at a depth $O(N)$. In addition, at those depths, the variances of both the fidelity and purity estimators display the same scaling with $N$ as in the case of global random unitaries. We establish these bounds by analytic arguments and extensive numerical computations in several cases of interest. Our work extends the applicability of shallow shadows to large system sizes and general circuit connectivity.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"89 1\",\"pages\":\"1698\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-04-08-1698\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-08-1698","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Approximate inverse measurement channel for shallow shadows
Classical shadows are a versatile tool to probe many-body quantum systems, consisting of a combination of randomised measurements and classical post-processing computations. In a recently introduced version of the protocol, the randomization step is performed via unitary circuits of variable depth $t$, defining the so-called shallow shadows. For sufficiently large $t$, this approach allows one to get around the use of non-local unitaries to probe global properties such as the fidelity with respect to a target state or the purity. Still, shallow shadows involve the inversion of a many-body map, the measurement channel, which requires non-trivial computations in the post-processing step, thus limiting its applicability when the number of qubits $N$ is large. In this work, we put forward a simple approximate post-processing scheme where the infinite-depth inverse channel is applied to the finite-depth classical shadows and study its performance for fidelity and purity estimation. The scheme allows for different circuit connectivity, as we illustrate for geometrically local circuits in one and two spatial dimensions and geometrically non-local circuits made of two-qubit gates. For the fidelity, we find that the resulting estimator coincides with a known linear cross-entropy, achieving an arbitrary small approximation error $\delta$ at depth $t=O(\log (N/\delta))$ (independent of the circuit connectivity). For the purity, we show that the estimator becomes accurate at a depth $O(N)$. In addition, at those depths, the variances of both the fidelity and purity estimators display the same scaling with $N$ as in the case of global random unitaries. We establish these bounds by analytic arguments and extensive numerical computations in several cases of interest. Our work extends the applicability of shallow shadows to large system sizes and general circuit connectivity.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.