支持lorawan的工业物联网通信的联邦学习框架:案例研究

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Oscar Torres Sanchez;Guilherme Borges;Duarte Raposo;André Rodrigues;Fernando Boavida;Jorge Sá Silva
{"title":"支持lorawan的工业物联网通信的联邦学习框架:案例研究","authors":"Oscar Torres Sanchez;Guilherme Borges;Duarte Raposo;André Rodrigues;Fernando Boavida;Jorge Sá Silva","doi":"10.1109/JIOT.2025.3558560","DOIUrl":null,"url":null,"abstract":"The development of intelligent Industrial Internet of Things (IIoT) systems promises to revolutionize operational and maintenance practices, driving improvements in operational efficiency. Anomaly detection within IIoT architectures plays a crucial role in preventive maintenance and spotting irregularities in industrial components. However, due to limited message and processing capacity, traditional machine learning (ML) faces challenges in deploying anomaly detection models in resource-constrained environments like LoRaWAN. On the other hand, federated learning (FL) solves this problem by enabling distributed model training, addressing privacy concerns, and minimizing data transmission. This study explores using FL for anomaly detection in industrial and civil construction machinery architectures that use IIoT prototypes with LoRaWAN communication. The process leverages an optimized autoencoder neural network structure and compares federated models with centralized ones. Despite uneven data distribution among machine clients, FL demonstrates effectiveness, with a mean F1 score (of 94.77), accuracy (of 92.30), TNR (of 90.65), and TPR (92.93), comparable to centralized models, considering airtime of training messages of 52.8 min. Local model evaluations on each machine highlight adaptability. At the same time, the performed analysis identifies message requirements, minimum training hours, and optimal round/epoch configurations for FL in LoRaWAN, guiding future implementations in constrained industrial environments.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 13","pages":"24944-24957"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Learning Framework for LoRaWAN-Enabled IIoT Communication: A Case Study\",\"authors\":\"Oscar Torres Sanchez;Guilherme Borges;Duarte Raposo;André Rodrigues;Fernando Boavida;Jorge Sá Silva\",\"doi\":\"10.1109/JIOT.2025.3558560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of intelligent Industrial Internet of Things (IIoT) systems promises to revolutionize operational and maintenance practices, driving improvements in operational efficiency. Anomaly detection within IIoT architectures plays a crucial role in preventive maintenance and spotting irregularities in industrial components. However, due to limited message and processing capacity, traditional machine learning (ML) faces challenges in deploying anomaly detection models in resource-constrained environments like LoRaWAN. On the other hand, federated learning (FL) solves this problem by enabling distributed model training, addressing privacy concerns, and minimizing data transmission. This study explores using FL for anomaly detection in industrial and civil construction machinery architectures that use IIoT prototypes with LoRaWAN communication. The process leverages an optimized autoencoder neural network structure and compares federated models with centralized ones. Despite uneven data distribution among machine clients, FL demonstrates effectiveness, with a mean F1 score (of 94.77), accuracy (of 92.30), TNR (of 90.65), and TPR (92.93), comparable to centralized models, considering airtime of training messages of 52.8 min. Local model evaluations on each machine highlight adaptability. At the same time, the performed analysis identifies message requirements, minimum training hours, and optimal round/epoch configurations for FL in LoRaWAN, guiding future implementations in constrained industrial environments.\",\"PeriodicalId\":54347,\"journal\":{\"name\":\"IEEE Internet of Things Journal\",\"volume\":\"12 13\",\"pages\":\"24944-24957\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10954980/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10954980/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能工业物联网(IIoT)系统的发展有望彻底改变运营和维护实践,推动运营效率的提高。工业物联网架构中的异常检测在预防性维护和发现工业组件中的违规行为方面起着至关重要的作用。然而,由于消息和处理能力有限,传统机器学习(ML)在资源受限的环境(如LoRaWAN)中部署异常检测模型面临挑战。另一方面,联邦学习(FL)通过支持分布式模型训练、解决隐私问题和最小化数据传输来解决这个问题。本研究探讨了在工业和民用工程机械架构中使用FL进行异常检测,这些架构使用带有LoRaWAN通信的工业物联网原型。该过程利用优化的自编码器神经网络结构,并将联邦模型与集中式模型进行比较。尽管机器客户端之间的数据分布不均匀,但FL显示出了有效性,考虑到训练消息的播出时间为52.8分钟,FL的平均F1分数(94.77)、准确率(92.30)、TNR(90.65)和TPR(92.93)与集中式模型相当。在每台机器上的局部模型评估突出了适应性。同时,执行的分析确定了LoRaWAN中FL的消息需求、最小培训时间和最佳回合/epoch配置,指导了未来在受限工业环境中的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated Learning Framework for LoRaWAN-Enabled IIoT Communication: A Case Study
The development of intelligent Industrial Internet of Things (IIoT) systems promises to revolutionize operational and maintenance practices, driving improvements in operational efficiency. Anomaly detection within IIoT architectures plays a crucial role in preventive maintenance and spotting irregularities in industrial components. However, due to limited message and processing capacity, traditional machine learning (ML) faces challenges in deploying anomaly detection models in resource-constrained environments like LoRaWAN. On the other hand, federated learning (FL) solves this problem by enabling distributed model training, addressing privacy concerns, and minimizing data transmission. This study explores using FL for anomaly detection in industrial and civil construction machinery architectures that use IIoT prototypes with LoRaWAN communication. The process leverages an optimized autoencoder neural network structure and compares federated models with centralized ones. Despite uneven data distribution among machine clients, FL demonstrates effectiveness, with a mean F1 score (of 94.77), accuracy (of 92.30), TNR (of 90.65), and TPR (92.93), comparable to centralized models, considering airtime of training messages of 52.8 min. Local model evaluations on each machine highlight adaptability. At the same time, the performed analysis identifies message requirements, minimum training hours, and optimal round/epoch configurations for FL in LoRaWAN, guiding future implementations in constrained industrial environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Internet of Things Journal
IEEE Internet of Things Journal Computer Science-Information Systems
CiteScore
17.60
自引率
13.20%
发文量
1982
期刊介绍: The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信