在线图模型:解决自适应滤波中非高斯噪声的挑战

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shan Zhong;Gang Wang;Kah Chan Teh;Jiacheng He;Tee Hiang Cheng;Bei Peng
{"title":"在线图模型:解决自适应滤波中非高斯噪声的挑战","authors":"Shan Zhong;Gang Wang;Kah Chan Teh;Jiacheng He;Tee Hiang Cheng;Bei Peng","doi":"10.1109/TNNLS.2025.3553872","DOIUrl":null,"url":null,"abstract":"Adaptive filtering faces significant challenges in handling complex non-Gaussian noise, while graph signal processing (GSP) excels at processing data with intricate structures. This brief introduces a novel method for solving non-Gaussian noise from the perspective of the graph domain for the first time. Specifically, we develop an online time-varying graph model based on the filter error signal and propose a corresponding graph topology transformation strategy. Utilizing a graph smoothness measure, we introduce a new adaptive filtering cost function, in which the graph Laplacian matrix plays a direct role in the filter update process. Subsequently, we derive the graph smoothness recursive adaptive filtering (GS-RAF) algorithm, rigorously analyze its theoretical performance, and validate its efficacy through simulations and echo cancellation experiments. The corresponding MATLAB (MathWorks, USA) codes of the simulations are publicly available at: <uri>https://github.com/smartXiaoz/GS-RAF.git</uri>.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 9","pages":"17516-17522"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Graph Models: Tackling the Challenges of Non-Gaussian Noise in Adaptive Filtering\",\"authors\":\"Shan Zhong;Gang Wang;Kah Chan Teh;Jiacheng He;Tee Hiang Cheng;Bei Peng\",\"doi\":\"10.1109/TNNLS.2025.3553872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive filtering faces significant challenges in handling complex non-Gaussian noise, while graph signal processing (GSP) excels at processing data with intricate structures. This brief introduces a novel method for solving non-Gaussian noise from the perspective of the graph domain for the first time. Specifically, we develop an online time-varying graph model based on the filter error signal and propose a corresponding graph topology transformation strategy. Utilizing a graph smoothness measure, we introduce a new adaptive filtering cost function, in which the graph Laplacian matrix plays a direct role in the filter update process. Subsequently, we derive the graph smoothness recursive adaptive filtering (GS-RAF) algorithm, rigorously analyze its theoretical performance, and validate its efficacy through simulations and echo cancellation experiments. The corresponding MATLAB (MathWorks, USA) codes of the simulations are publicly available at: <uri>https://github.com/smartXiaoz/GS-RAF.git</uri>.\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"36 9\",\"pages\":\"17516-17522\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10951113/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10951113/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自适应滤波在处理复杂的非高斯噪声方面面临重大挑战,而图信号处理(GSP)在处理结构复杂的数据方面表现出色。本文首次从图域的角度介绍了一种求解非高斯噪声的新方法。具体来说,我们建立了一个基于滤波误差信号的在线时变图模型,并提出了相应的图拓扑变换策略。利用图平滑度量,我们引入了一种新的自适应滤波代价函数,其中图拉普拉斯矩阵在滤波器更新过程中起直接作用。随后,我们推导了图平滑递归自适应滤波(GS-RAF)算法,严格分析了其理论性能,并通过仿真和回波抵消实验验证了其有效性。仿真的相应MATLAB (MathWorks, USA)代码可在https://github.com/smartXiaoz/GS-RAF.git公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Graph Models: Tackling the Challenges of Non-Gaussian Noise in Adaptive Filtering
Adaptive filtering faces significant challenges in handling complex non-Gaussian noise, while graph signal processing (GSP) excels at processing data with intricate structures. This brief introduces a novel method for solving non-Gaussian noise from the perspective of the graph domain for the first time. Specifically, we develop an online time-varying graph model based on the filter error signal and propose a corresponding graph topology transformation strategy. Utilizing a graph smoothness measure, we introduce a new adaptive filtering cost function, in which the graph Laplacian matrix plays a direct role in the filter update process. Subsequently, we derive the graph smoothness recursive adaptive filtering (GS-RAF) algorithm, rigorously analyze its theoretical performance, and validate its efficacy through simulations and echo cancellation experiments. The corresponding MATLAB (MathWorks, USA) codes of the simulations are publicly available at: https://github.com/smartXiaoz/GS-RAF.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信