Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer
{"title":"无接触粘着:弹性流体动力粘着","authors":"Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer","doi":"10.1103/physrevx.15.021006","DOIUrl":null,"url":null,"abstract":"The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F</a:mi>∝</a:mo>t</a:mi>2</a:mn>/</a:mo>3</a:mn></a:mrow></a:msup></a:math>. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"22 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sticking without Contact: Elastohydrodynamic Adhesion\",\"authors\":\"Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer\",\"doi\":\"10.1103/physrevx.15.021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F</a:mi>∝</a:mo>t</a:mi>2</a:mn>/</a:mo>3</a:mn></a:mrow></a:msup></a:math>. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021006\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021006","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Sticking without Contact: Elastohydrodynamic Adhesion
The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F∝t2/3. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.