无接触粘着:弹性流体动力粘着

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer
{"title":"无接触粘着:弹性流体动力粘着","authors":"Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer","doi":"10.1103/physrevx.15.021006","DOIUrl":null,"url":null,"abstract":"The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F</a:mi>∝</a:mo>t</a:mi>2</a:mn>/</a:mo>3</a:mn></a:mrow></a:msup></a:math>. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"22 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sticking without Contact: Elastohydrodynamic Adhesion\",\"authors\":\"Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer\",\"doi\":\"10.1103/physrevx.15.021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F</a:mi>∝</a:mo>t</a:mi>2</a:mn>/</a:mo>3</a:mn></a:mrow></a:msup></a:math>. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021006\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021006","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

干燥固体表面之间的粘附通常由接触力控制,包括表面力和弹性。对于浸入流体中的表面,由于液体间隙打开时的粘性阻力而产生非接触粘附。虽然干燥固体之间的粘附是由经典的约翰逊-肯德尔-罗伯茨(JKR)理论描述的,但对于软固体的湿粘附没有等效的框架。在这里,我们从理论上研究了在球体与弹性基底分离过程中出现的粘性粘附。固体之间的粘性薄膜内的吸力压力引起了显著的弹性位移。出乎意料的是,弹性基板紧紧跟随球体的运动,导致没有接触的粘着。初始动力学是用相似解来描述的,其结果是随着F∝t2/3而随时间增长的非线性附着力。当弹性位移变得足够大时,另一种相似解出现,通过有限时间奇点导致粘合接触的剧烈断裂。观察到的现象学与JKR理论有很强的相似性,并且与涉及粘性粘附的广泛应用有关。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sticking without Contact: Elastohydrodynamic Adhesion
The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F∝t2/3. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信