DataSHIELD:减轻多站点联邦分析平台中的披露风险。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-10 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf046
Demetris Avraam, Rebecca C Wilson, Noemi Aguirre Chan, Soumya Banerjee, Tom R P Bishop, Olly Butters, Tim Cadman, Luise Cederkvist, Liesbeth Duijts, Xavier Escribà Montagut, Hugh Garner, Gonçalo Gonçalves, Juan R González, Sido Haakma, Mette Hartlev, Jan Hasenauer, Manuel Huth, Eleanor Hyde, Vincent W V Jaddoe, Yannick Marcon, Michaela Th Mayrhofer, Fruzsina Molnar-Gabor, Andrei Scott Morgan, Madeleine Murtagh, Marc Nestor, Anne-Marie Nybo Andersen, Simon Parker, Angela Pinot de Moira, Florian Schwarz, Katrine Strandberg-Larsen, Morris A Swertz, Marieke Welten, Stuart Wheater, Paul Burton
{"title":"DataSHIELD:减轻多站点联邦分析平台中的披露风险。","authors":"Demetris Avraam, Rebecca C Wilson, Noemi Aguirre Chan, Soumya Banerjee, Tom R P Bishop, Olly Butters, Tim Cadman, Luise Cederkvist, Liesbeth Duijts, Xavier Escribà Montagut, Hugh Garner, Gonçalo Gonçalves, Juan R González, Sido Haakma, Mette Hartlev, Jan Hasenauer, Manuel Huth, Eleanor Hyde, Vincent W V Jaddoe, Yannick Marcon, Michaela Th Mayrhofer, Fruzsina Molnar-Gabor, Andrei Scott Morgan, Madeleine Murtagh, Marc Nestor, Anne-Marie Nybo Andersen, Simon Parker, Angela Pinot de Moira, Florian Schwarz, Katrine Strandberg-Larsen, Morris A Swertz, Marieke Welten, Stuart Wheater, Paul Burton","doi":"10.1093/bioadv/vbaf046","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The validity of epidemiologic findings can be increased using triangulation, i.e. comparison of findings across contexts, and by having sufficiently large amounts of relevant data to analyse. However, access to data is often constrained by practical considerations and by ethico-legal and data governance restrictions. Gaining access to such data can be time-consuming due to the governance requirements associated with data access requests to institutions in different jurisdictions.</p><p><strong>Results: </strong>DataSHIELD is a software solution that enables remote analysis without the need for data transfer (federated analysis). DataSHIELD is a scientifically mature, open-source data access and analysis platform aligned with the 'Five Safes' framework, the international framework governing safe research access to data. It allows real-time analysis while mitigating disclosure risk through an active multi-layer system of disclosure-preventing mechanisms. This combination of real-time remote statistical analysis, disclosure prevention mechanisms, and federation capabilities makes DataSHIELD a solution for addressing many of the technical and regulatory challenges in performing the large-scale statistical analysis of health and biomedical data. This paper describes the key components that comprise the disclosure protection system of DataSHIELD. These broadly fall into three classes: (i) system protection elements, (ii) analysis protection elements, and (iii) governance protection elements.</p><p><strong>Availability and implementation: </strong>Information about the DataSHIELD software is available in https://datashield.org/ and https://github.com/datashield.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf046"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968321/pdf/","citationCount":"0","resultStr":"{\"title\":\"DataSHIELD: mitigating disclosure risk in a multi-site federated analysis platform.\",\"authors\":\"Demetris Avraam, Rebecca C Wilson, Noemi Aguirre Chan, Soumya Banerjee, Tom R P Bishop, Olly Butters, Tim Cadman, Luise Cederkvist, Liesbeth Duijts, Xavier Escribà Montagut, Hugh Garner, Gonçalo Gonçalves, Juan R González, Sido Haakma, Mette Hartlev, Jan Hasenauer, Manuel Huth, Eleanor Hyde, Vincent W V Jaddoe, Yannick Marcon, Michaela Th Mayrhofer, Fruzsina Molnar-Gabor, Andrei Scott Morgan, Madeleine Murtagh, Marc Nestor, Anne-Marie Nybo Andersen, Simon Parker, Angela Pinot de Moira, Florian Schwarz, Katrine Strandberg-Larsen, Morris A Swertz, Marieke Welten, Stuart Wheater, Paul Burton\",\"doi\":\"10.1093/bioadv/vbaf046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The validity of epidemiologic findings can be increased using triangulation, i.e. comparison of findings across contexts, and by having sufficiently large amounts of relevant data to analyse. However, access to data is often constrained by practical considerations and by ethico-legal and data governance restrictions. Gaining access to such data can be time-consuming due to the governance requirements associated with data access requests to institutions in different jurisdictions.</p><p><strong>Results: </strong>DataSHIELD is a software solution that enables remote analysis without the need for data transfer (federated analysis). DataSHIELD is a scientifically mature, open-source data access and analysis platform aligned with the 'Five Safes' framework, the international framework governing safe research access to data. It allows real-time analysis while mitigating disclosure risk through an active multi-layer system of disclosure-preventing mechanisms. This combination of real-time remote statistical analysis, disclosure prevention mechanisms, and federation capabilities makes DataSHIELD a solution for addressing many of the technical and regulatory challenges in performing the large-scale statistical analysis of health and biomedical data. This paper describes the key components that comprise the disclosure protection system of DataSHIELD. These broadly fall into three classes: (i) system protection elements, (ii) analysis protection elements, and (iii) governance protection elements.</p><p><strong>Availability and implementation: </strong>Information about the DataSHIELD software is available in https://datashield.org/ and https://github.com/datashield.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf046\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:流行病学发现的有效性可以通过三角测量法来提高,即通过比较不同背景下的发现,并通过有足够大的相关数据进行分析。然而,对数据的访问往往受到实际考虑以及伦理法律和数据治理限制的限制。由于与向不同司法管辖区的机构提出的数据访问请求相关的治理要求,获得对此类数据的访问可能非常耗时。结果:DataSHIELD是一个软件解决方案,使远程分析无需数据传输(联邦分析)。DataSHIELD是一个科学上成熟的、开源的数据访问和分析平台,与“五个安全”框架(管理安全研究数据访问的国际框架)保持一致。它允许实时分析,同时通过主动的多层披露预防机制降低披露风险。实时远程统计分析、信息披露预防机制和联合功能的结合,使DataSHIELD成为解决健康和生物医学数据大规模统计分析中许多技术和监管挑战的解决方案。本文介绍了构成DataSHIELD信息披露保护系统的关键组成部分。它们大致分为三类:(i)系统保护元素,(ii)分析保护元素,以及(iii)治理保护元素。可用性和实现:有关DataSHIELD软件的信息可在https://datashield.org/和https://github.com/datashield中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DataSHIELD: mitigating disclosure risk in a multi-site federated analysis platform.

Motivation: The validity of epidemiologic findings can be increased using triangulation, i.e. comparison of findings across contexts, and by having sufficiently large amounts of relevant data to analyse. However, access to data is often constrained by practical considerations and by ethico-legal and data governance restrictions. Gaining access to such data can be time-consuming due to the governance requirements associated with data access requests to institutions in different jurisdictions.

Results: DataSHIELD is a software solution that enables remote analysis without the need for data transfer (federated analysis). DataSHIELD is a scientifically mature, open-source data access and analysis platform aligned with the 'Five Safes' framework, the international framework governing safe research access to data. It allows real-time analysis while mitigating disclosure risk through an active multi-layer system of disclosure-preventing mechanisms. This combination of real-time remote statistical analysis, disclosure prevention mechanisms, and federation capabilities makes DataSHIELD a solution for addressing many of the technical and regulatory challenges in performing the large-scale statistical analysis of health and biomedical data. This paper describes the key components that comprise the disclosure protection system of DataSHIELD. These broadly fall into three classes: (i) system protection elements, (ii) analysis protection elements, and (iii) governance protection elements.

Availability and implementation: Information about the DataSHIELD software is available in https://datashield.org/ and https://github.com/datashield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信