抛物算子的正则性问题及半时间导数的作用。

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2025-01-01 Epub Date: 2025-04-02 DOI:10.1007/s12220-025-01991-9
Martin Dindoš
{"title":"抛物算子的正则性问题及半时间导数的作用。","authors":"Martin Dindoš","doi":"10.1007/s12220-025-01991-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we present the following result on regularity of solutions of the second order parabolic equation <math> <mrow><msub><mi>∂</mi> <mi>t</mi></msub> <mi>u</mi> <mo>-</mo> <mrow><mspace></mspace> <mtext>div</mtext> <mspace></mspace></mrow> <mrow><mo>(</mo> <mi>A</mi> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> <mo>+</mo> <mi>B</mi> <mo>·</mo> <mi>∇</mi> <mi>u</mi> <mo>=</mo> <mn>0</mn></mrow> </math> on cylindrical domains of the form <math><mrow><mi>Ω</mi> <mo>=</mo> <mi>O</mi> <mo>×</mo> <mi>R</mi></mrow> </math> where <math><mrow><mi>O</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> is a uniform domain (it satisfies both interior corkscrew and Harnack chain conditions) and has a boundary that is <math><mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </math> -Ahlfors regular. Let <i>u</i> be a solution of such PDE in <math><mi>Ω</mi></math> and the non-tangential maximal function of its gradient in spatial directions <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> belongs to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> for some <math><mrow><mi>p</mi> <mo>></mo> <mn>1</mn></mrow> </math> . Furthermore, assume that for <math> <mrow> <msub><mrow><mi>u</mi> <mo>|</mo></mrow> <mrow><mi>∂</mi> <mi>Ω</mi></mrow> </msub> <mo>=</mo> <mi>f</mi></mrow> </math> we have that <math> <mrow><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>f</mi> <mo>∈</mo> <msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> . Then both <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> and <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <msub><mi>H</mi> <mi>t</mi></msub> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> also belong to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> , where <math><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> </math> and <math><msub><mi>H</mi> <mi>t</mi></msub> </math> are the half-derivative and the Hilbert transform in the time variable, respectively. We expect this result will spur new developments in the study of solvability of the <math><msup><mi>L</mi> <mi>p</mi></msup> </math> parabolic Regularity problem as thanks to it it is now possible to formulate the parabolic Regularity problem on a large class of time-varying domains.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 5","pages":"154"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965225/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the Regularity Problem for Parabolic Operators and the Role of Half-Time Derivative.\",\"authors\":\"Martin Dindoš\",\"doi\":\"10.1007/s12220-025-01991-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we present the following result on regularity of solutions of the second order parabolic equation <math> <mrow><msub><mi>∂</mi> <mi>t</mi></msub> <mi>u</mi> <mo>-</mo> <mrow><mspace></mspace> <mtext>div</mtext> <mspace></mspace></mrow> <mrow><mo>(</mo> <mi>A</mi> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> <mo>+</mo> <mi>B</mi> <mo>·</mo> <mi>∇</mi> <mi>u</mi> <mo>=</mo> <mn>0</mn></mrow> </math> on cylindrical domains of the form <math><mrow><mi>Ω</mi> <mo>=</mo> <mi>O</mi> <mo>×</mo> <mi>R</mi></mrow> </math> where <math><mrow><mi>O</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> is a uniform domain (it satisfies both interior corkscrew and Harnack chain conditions) and has a boundary that is <math><mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </math> -Ahlfors regular. Let <i>u</i> be a solution of such PDE in <math><mi>Ω</mi></math> and the non-tangential maximal function of its gradient in spatial directions <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> belongs to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> for some <math><mrow><mi>p</mi> <mo>></mo> <mn>1</mn></mrow> </math> . Furthermore, assume that for <math> <mrow> <msub><mrow><mi>u</mi> <mo>|</mo></mrow> <mrow><mi>∂</mi> <mi>Ω</mi></mrow> </msub> <mo>=</mo> <mi>f</mi></mrow> </math> we have that <math> <mrow><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>f</mi> <mo>∈</mo> <msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> . Then both <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> and <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <msub><mi>H</mi> <mi>t</mi></msub> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> also belong to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> , where <math><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> </math> and <math><msub><mi>H</mi> <mi>t</mi></msub> </math> are the half-derivative and the Hilbert transform in the time variable, respectively. We expect this result will spur new developments in the study of solvability of the <math><msup><mi>L</mi> <mi>p</mi></msup> </math> parabolic Regularity problem as thanks to it it is now possible to formulate the parabolic Regularity problem on a large class of time-varying domains.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"35 5\",\"pages\":\"154\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-025-01991-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-01991-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了二阶抛物方程∂t u - div (A∇u) + B·∇u = 0在形式为Ω = O × R的柱面上解的正则性的结果,其中O∧R n是一致定域(满足内螺旋条件和哈纳克链条件),边界为n - 1 - ahlfors正则。设u是这种PDE在Ω中的解,并且其梯度在空间方向N ~(∇u)的非切极大函数在某个p bbb1中属于L p(∂Ω)。进一步,假设对于u |∂Ω = f,我们有d1 / 2f∈L p(∂Ω)。那么N ~ (dt 1 / 2 u)和N ~ (dt 1 / 2 H t u)也属于L p(∂Ω),其中dt 1 / 2和ht分别是时间变量的半导数和希尔伯特变换。我们期望这一结果将促进L p抛物正则性问题可解性研究的新发展,因为它使在大的一类时变域上表述抛物正则性问题成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Regularity Problem for Parabolic Operators and the Role of Half-Time Derivative.

In this paper we present the following result on regularity of solutions of the second order parabolic equation t u - div ( A u ) + B · u = 0 on cylindrical domains of the form Ω = O × R where O R n is a uniform domain (it satisfies both interior corkscrew and Harnack chain conditions) and has a boundary that is n - 1 -Ahlfors regular. Let u be a solution of such PDE in Ω and the non-tangential maximal function of its gradient in spatial directions N ~ ( u ) belongs to L p ( Ω ) for some p > 1 . Furthermore, assume that for u | Ω = f we have that D t 1 / 2 f L p ( Ω ) . Then both N ~ ( D t 1 / 2 u ) and N ~ ( D t 1 / 2 H t u ) also belong to L p ( Ω ) , where D t 1 / 2 and H t are the half-derivative and the Hilbert transform in the time variable, respectively. We expect this result will spur new developments in the study of solvability of the L p parabolic Regularity problem as thanks to it it is now possible to formulate the parabolic Regularity problem on a large class of time-varying domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信