{"title":"抛物算子的正则性问题及半时间导数的作用。","authors":"Martin Dindoš","doi":"10.1007/s12220-025-01991-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we present the following result on regularity of solutions of the second order parabolic equation <math> <mrow><msub><mi>∂</mi> <mi>t</mi></msub> <mi>u</mi> <mo>-</mo> <mrow><mspace></mspace> <mtext>div</mtext> <mspace></mspace></mrow> <mrow><mo>(</mo> <mi>A</mi> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> <mo>+</mo> <mi>B</mi> <mo>·</mo> <mi>∇</mi> <mi>u</mi> <mo>=</mo> <mn>0</mn></mrow> </math> on cylindrical domains of the form <math><mrow><mi>Ω</mi> <mo>=</mo> <mi>O</mi> <mo>×</mo> <mi>R</mi></mrow> </math> where <math><mrow><mi>O</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> is a uniform domain (it satisfies both interior corkscrew and Harnack chain conditions) and has a boundary that is <math><mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </math> -Ahlfors regular. Let <i>u</i> be a solution of such PDE in <math><mi>Ω</mi></math> and the non-tangential maximal function of its gradient in spatial directions <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> belongs to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> for some <math><mrow><mi>p</mi> <mo>></mo> <mn>1</mn></mrow> </math> . Furthermore, assume that for <math> <mrow> <msub><mrow><mi>u</mi> <mo>|</mo></mrow> <mrow><mi>∂</mi> <mi>Ω</mi></mrow> </msub> <mo>=</mo> <mi>f</mi></mrow> </math> we have that <math> <mrow><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>f</mi> <mo>∈</mo> <msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> . Then both <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> and <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <msub><mi>H</mi> <mi>t</mi></msub> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> also belong to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> , where <math><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> </math> and <math><msub><mi>H</mi> <mi>t</mi></msub> </math> are the half-derivative and the Hilbert transform in the time variable, respectively. We expect this result will spur new developments in the study of solvability of the <math><msup><mi>L</mi> <mi>p</mi></msup> </math> parabolic Regularity problem as thanks to it it is now possible to formulate the parabolic Regularity problem on a large class of time-varying domains.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 5","pages":"154"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965225/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the Regularity Problem for Parabolic Operators and the Role of Half-Time Derivative.\",\"authors\":\"Martin Dindoš\",\"doi\":\"10.1007/s12220-025-01991-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we present the following result on regularity of solutions of the second order parabolic equation <math> <mrow><msub><mi>∂</mi> <mi>t</mi></msub> <mi>u</mi> <mo>-</mo> <mrow><mspace></mspace> <mtext>div</mtext> <mspace></mspace></mrow> <mrow><mo>(</mo> <mi>A</mi> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> <mo>+</mo> <mi>B</mi> <mo>·</mo> <mi>∇</mi> <mi>u</mi> <mo>=</mo> <mn>0</mn></mrow> </math> on cylindrical domains of the form <math><mrow><mi>Ω</mi> <mo>=</mo> <mi>O</mi> <mo>×</mo> <mi>R</mi></mrow> </math> where <math><mrow><mi>O</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> is a uniform domain (it satisfies both interior corkscrew and Harnack chain conditions) and has a boundary that is <math><mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </math> -Ahlfors regular. Let <i>u</i> be a solution of such PDE in <math><mi>Ω</mi></math> and the non-tangential maximal function of its gradient in spatial directions <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <mi>∇</mi> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> belongs to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> for some <math><mrow><mi>p</mi> <mo>></mo> <mn>1</mn></mrow> </math> . Furthermore, assume that for <math> <mrow> <msub><mrow><mi>u</mi> <mo>|</mo></mrow> <mrow><mi>∂</mi> <mi>Ω</mi></mrow> </msub> <mo>=</mo> <mi>f</mi></mrow> </math> we have that <math> <mrow><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>f</mi> <mo>∈</mo> <msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> . Then both <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> and <math> <mrow><mover><mi>N</mi> <mo>~</mo></mover> <mrow><mo>(</mo> <msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> <msub><mi>H</mi> <mi>t</mi></msub> <mi>u</mi> <mo>)</mo></mrow> </mrow> </math> also belong to <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> , where <math><msubsup><mi>D</mi> <mi>t</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msubsup> </math> and <math><msub><mi>H</mi> <mi>t</mi></msub> </math> are the half-derivative and the Hilbert transform in the time variable, respectively. We expect this result will spur new developments in the study of solvability of the <math><msup><mi>L</mi> <mi>p</mi></msup> </math> parabolic Regularity problem as thanks to it it is now possible to formulate the parabolic Regularity problem on a large class of time-varying domains.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"35 5\",\"pages\":\"154\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-025-01991-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-01991-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了二阶抛物方程∂t u - div (A∇u) + B·∇u = 0在形式为Ω = O × R的柱面上解的正则性的结果,其中O∧R n是一致定域(满足内螺旋条件和哈纳克链条件),边界为n - 1 - ahlfors正则。设u是这种PDE在Ω中的解,并且其梯度在空间方向N ~(∇u)的非切极大函数在某个p bbb1中属于L p(∂Ω)。进一步,假设对于u |∂Ω = f,我们有d1 / 2f∈L p(∂Ω)。那么N ~ (dt 1 / 2 u)和N ~ (dt 1 / 2 H t u)也属于L p(∂Ω),其中dt 1 / 2和ht分别是时间变量的半导数和希尔伯特变换。我们期望这一结果将促进L p抛物正则性问题可解性研究的新发展,因为它使在大的一类时变域上表述抛物正则性问题成为可能。
On the Regularity Problem for Parabolic Operators and the Role of Half-Time Derivative.
In this paper we present the following result on regularity of solutions of the second order parabolic equation on cylindrical domains of the form where is a uniform domain (it satisfies both interior corkscrew and Harnack chain conditions) and has a boundary that is -Ahlfors regular. Let u be a solution of such PDE in and the non-tangential maximal function of its gradient in spatial directions belongs to for some . Furthermore, assume that for we have that . Then both and also belong to , where and are the half-derivative and the Hilbert transform in the time variable, respectively. We expect this result will spur new developments in the study of solvability of the parabolic Regularity problem as thanks to it it is now possible to formulate the parabolic Regularity problem on a large class of time-varying domains.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.