有限体积双曲曲面的低Steklov特征值的几何界。

IF 1.5 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2025-01-01 Epub Date: 2025-04-04 DOI:10.1007/s12220-025-01990-w
Asma Hassannezhad, Antoine Métras, Hélène Perrin
{"title":"有限体积双曲曲面的低Steklov特征值的几何界。","authors":"Asma Hassannezhad, Antoine Métras, Hélène Perrin","doi":"10.1007/s12220-025-01990-w","DOIUrl":null,"url":null,"abstract":"<p><p>We obtain geometric lower bounds for the low Steklov eigenvalues of finite-volume hyperbolic surfaces with geodesic boundary. The bounds we obtain depend on the length of a shortest multi-geodesic disconnecting the surfaces into connected components each containing a boundary component and the rate of dependency on it is sharp. Our result also identifies situations when the bound is independent of the length of this multi-geodesic. The bounds also hold when the Gaussian curvature is bounded between two negative constants and can be viewed as a counterpart of the well-known Schoen-Wolpert-Yau inequality for Laplace eigenvalues. The proof is based on analysing the behaviour of the corresponding Steklov eigenfunction on an adapted version of thick-thin decomposition for hyperbolic surfaces with geodesic boundary. Our results extend and improve the previously known result in the compact case obtained by a different method.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 5","pages":"158"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces.\",\"authors\":\"Asma Hassannezhad, Antoine Métras, Hélène Perrin\",\"doi\":\"10.1007/s12220-025-01990-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We obtain geometric lower bounds for the low Steklov eigenvalues of finite-volume hyperbolic surfaces with geodesic boundary. The bounds we obtain depend on the length of a shortest multi-geodesic disconnecting the surfaces into connected components each containing a boundary component and the rate of dependency on it is sharp. Our result also identifies situations when the bound is independent of the length of this multi-geodesic. The bounds also hold when the Gaussian curvature is bounded between two negative constants and can be viewed as a counterpart of the well-known Schoen-Wolpert-Yau inequality for Laplace eigenvalues. The proof is based on analysing the behaviour of the corresponding Steklov eigenfunction on an adapted version of thick-thin decomposition for hyperbolic surfaces with geodesic boundary. Our results extend and improve the previously known result in the compact case obtained by a different method.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"35 5\",\"pages\":\"158\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-025-01990-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-01990-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

得到了具有测地线边界的有限体积双曲曲面的低Steklov特征值的几何下界。我们得到的边界依赖于一个最短的多测地线的长度,该多测地线将曲面分离成包含边界分量的连接分量,并且依赖于它的速度非常快。我们的结果还确定了边界与多测地线长度无关的情况。当高斯曲率在两个负常数之间有界时,边界也成立,可以看作是著名的拉普拉斯特征值的Schoen-Wolpert-Yau不等式的对应。该证明是基于分析相应的Steklov特征函数在具有测地线边界的双曲曲面的一种改进型厚-薄分解上的行为。我们的结果扩展和改进了以前用不同方法得到的紧情况下的已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces.

Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces.

Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces.

Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces.

We obtain geometric lower bounds for the low Steklov eigenvalues of finite-volume hyperbolic surfaces with geodesic boundary. The bounds we obtain depend on the length of a shortest multi-geodesic disconnecting the surfaces into connected components each containing a boundary component and the rate of dependency on it is sharp. Our result also identifies situations when the bound is independent of the length of this multi-geodesic. The bounds also hold when the Gaussian curvature is bounded between two negative constants and can be viewed as a counterpart of the well-known Schoen-Wolpert-Yau inequality for Laplace eigenvalues. The proof is based on analysing the behaviour of the corresponding Steklov eigenfunction on an adapted version of thick-thin decomposition for hyperbolic surfaces with geodesic boundary. Our results extend and improve the previously known result in the compact case obtained by a different method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信