{"title":"c2中的自由边界哈密顿静止拉格朗日盘。","authors":"Filippo Gaia","doi":"10.1007/s12220-025-01962-0","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </mrow> </math> be a smooth domain. We establish conditions under which a weakly conformal, branched <math><mi>Ω</mi></math> -free boundary Hamiltonian stationary Lagrangian immersion <i>u</i> of a disc in <math> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </math> is a <math><mi>Ω</mi></math> -free boundary minimal immersion. We deduce that if <math><mi>u</mi></math> is a weakly conformal, branched <math> <mrow><msub><mi>B</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mn>0</mn> <mo>)</mo></mrow> </mrow> </math> -free boundary Hamiltonian stationary Lagrangian immersion of a disc with Legendrian boundary, then <math><mrow><mi>u</mi> <mo>(</mo> <msup><mi>D</mi> <mn>2</mn></msup> <mo>)</mo></mrow> </math> is a Lagrangian equatorial plane disc. Furthermore, we present examples of <math><mi>Ω</mi></math> -free boundary Hamiltonian stationary discs, demonstrating the optimality of our assumptions.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 5","pages":"160"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971164/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Free Boundary Hamiltonian Stationary Lagrangian Discs in <ns0:math> <ns0:msup><ns0:mrow><ns0:mi>C</ns0:mi></ns0:mrow> <ns0:mn>2</ns0:mn></ns0:msup></ns0:math>.\",\"authors\":\"Filippo Gaia\",\"doi\":\"10.1007/s12220-025-01962-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </mrow> </math> be a smooth domain. We establish conditions under which a weakly conformal, branched <math><mi>Ω</mi></math> -free boundary Hamiltonian stationary Lagrangian immersion <i>u</i> of a disc in <math> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </math> is a <math><mi>Ω</mi></math> -free boundary minimal immersion. We deduce that if <math><mi>u</mi></math> is a weakly conformal, branched <math> <mrow><msub><mi>B</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mn>0</mn> <mo>)</mo></mrow> </mrow> </math> -free boundary Hamiltonian stationary Lagrangian immersion of a disc with Legendrian boundary, then <math><mrow><mi>u</mi> <mo>(</mo> <msup><mi>D</mi> <mn>2</mn></msup> <mo>)</mo></mrow> </math> is a Lagrangian equatorial plane disc. Furthermore, we present examples of <math><mi>Ω</mi></math> -free boundary Hamiltonian stationary discs, demonstrating the optimality of our assumptions.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"35 5\",\"pages\":\"160\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971164/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-025-01962-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-01962-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Free Boundary Hamiltonian Stationary Lagrangian Discs in C2.
Let be a smooth domain. We establish conditions under which a weakly conformal, branched -free boundary Hamiltonian stationary Lagrangian immersion u of a disc in is a -free boundary minimal immersion. We deduce that if is a weakly conformal, branched -free boundary Hamiltonian stationary Lagrangian immersion of a disc with Legendrian boundary, then is a Lagrangian equatorial plane disc. Furthermore, we present examples of -free boundary Hamiltonian stationary discs, demonstrating the optimality of our assumptions.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.