Ziyang Yu, Yinke Du, Huize Pang, Xiaolu Li, Yu Liu, Shuting Bu, Juzhou Wang, Mengwan Zhao, Zhenghong Ren, Xuedan Li, Li Yao
{"title":"肾功能对影响终末期肾病轻度认知障碍转换的多模态脑网络的影响","authors":"Ziyang Yu, Yinke Du, Huize Pang, Xiaolu Li, Yu Liu, Shuting Bu, Juzhou Wang, Mengwan Zhao, Zhenghong Ren, Xuedan Li, Li Yao","doi":"10.1016/j.acra.2025.01.031","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Cognitive decline is common in End-Stage Renal Disease (ESRD) patients, yet its neural mechanisms are poorly understood. This study investigates structural and functional brain network reconfiguration in ESRD patients transitioning to Mild Cognitive Impairment (MCI) and evaluates its potential for predicting MCI risk.</p><p><strong>Methods: </strong>We enrolled 90 ESRD patients with 2-year follow-up, categorized as MCI converters (MCI_C, n=48) and non-converters (MCI_NC, n=42). Brain networks were constructed using baseline rs-fMRI and high angular resolution diffusion imaging, focusing on regional structural-functional coupling (SFC). A Support Vector Machine (SVM) model was used to identify brain regions associated with cognitive decline. Mediation analysis was conducted to explore the relationship between kidney function, brain network reconfiguration, and cognition.</p><p><strong>Results: </strong>MCI_C patients showed decreased network efficiency in the structural network and compensatory changes in the functional network. Machine learning models using multimodal network features predicted MCI with high accuracy (AUC=0.928 for training set, AUC=0.903 for test set). SHAP analysis indicated that reduced hippocampal SFC was the most significant predictor of MCI_C. Mediation analysis revealed that altered brain network topology, particularly hippocampal SFC, mediated the relationship between kidney dysfunction and cognitive decline.</p><p><strong>Conclusion: </strong>This study provides new insights into the link between kidney function and cognition, offering potential clinical applications for structural and functional MRI biomarkers.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Renal Function on the Multimodal Brain Networks Affecting Mild Cognitive Impairment Converters in End-Stage Renal Disease.\",\"authors\":\"Ziyang Yu, Yinke Du, Huize Pang, Xiaolu Li, Yu Liu, Shuting Bu, Juzhou Wang, Mengwan Zhao, Zhenghong Ren, Xuedan Li, Li Yao\",\"doi\":\"10.1016/j.acra.2025.01.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale and objectives: </strong>Cognitive decline is common in End-Stage Renal Disease (ESRD) patients, yet its neural mechanisms are poorly understood. This study investigates structural and functional brain network reconfiguration in ESRD patients transitioning to Mild Cognitive Impairment (MCI) and evaluates its potential for predicting MCI risk.</p><p><strong>Methods: </strong>We enrolled 90 ESRD patients with 2-year follow-up, categorized as MCI converters (MCI_C, n=48) and non-converters (MCI_NC, n=42). Brain networks were constructed using baseline rs-fMRI and high angular resolution diffusion imaging, focusing on regional structural-functional coupling (SFC). A Support Vector Machine (SVM) model was used to identify brain regions associated with cognitive decline. Mediation analysis was conducted to explore the relationship between kidney function, brain network reconfiguration, and cognition.</p><p><strong>Results: </strong>MCI_C patients showed decreased network efficiency in the structural network and compensatory changes in the functional network. Machine learning models using multimodal network features predicted MCI with high accuracy (AUC=0.928 for training set, AUC=0.903 for test set). SHAP analysis indicated that reduced hippocampal SFC was the most significant predictor of MCI_C. Mediation analysis revealed that altered brain network topology, particularly hippocampal SFC, mediated the relationship between kidney dysfunction and cognitive decline.</p><p><strong>Conclusion: </strong>This study provides new insights into the link between kidney function and cognition, offering potential clinical applications for structural and functional MRI biomarkers.</p>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.acra.2025.01.031\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.01.031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Effects of Renal Function on the Multimodal Brain Networks Affecting Mild Cognitive Impairment Converters in End-Stage Renal Disease.
Rationale and objectives: Cognitive decline is common in End-Stage Renal Disease (ESRD) patients, yet its neural mechanisms are poorly understood. This study investigates structural and functional brain network reconfiguration in ESRD patients transitioning to Mild Cognitive Impairment (MCI) and evaluates its potential for predicting MCI risk.
Methods: We enrolled 90 ESRD patients with 2-year follow-up, categorized as MCI converters (MCI_C, n=48) and non-converters (MCI_NC, n=42). Brain networks were constructed using baseline rs-fMRI and high angular resolution diffusion imaging, focusing on regional structural-functional coupling (SFC). A Support Vector Machine (SVM) model was used to identify brain regions associated with cognitive decline. Mediation analysis was conducted to explore the relationship between kidney function, brain network reconfiguration, and cognition.
Results: MCI_C patients showed decreased network efficiency in the structural network and compensatory changes in the functional network. Machine learning models using multimodal network features predicted MCI with high accuracy (AUC=0.928 for training set, AUC=0.903 for test set). SHAP analysis indicated that reduced hippocampal SFC was the most significant predictor of MCI_C. Mediation analysis revealed that altered brain network topology, particularly hippocampal SFC, mediated the relationship between kidney dysfunction and cognitive decline.
Conclusion: This study provides new insights into the link between kidney function and cognition, offering potential clinical applications for structural and functional MRI biomarkers.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.