根据脑电图的瞬时振幅和相位构建的图表能成功区分运动想象任务

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.4103/jmss.jmss_63_24
Maliheh Miri, Vahid Abootalebi, Hamid Saeedi-Sourck, Dimitri Van De Ville, Hamid Behjat
{"title":"根据脑电图的瞬时振幅和相位构建的图表能成功区分运动想象任务","authors":"Maliheh Miri, Vahid Abootalebi, Hamid Saeedi-Sourck, Dimitri Van De Ville, Hamid Behjat","doi":"10.4103/jmss.jmss_63_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate classification of electroencephalogram (EEG) signals is challenging given the nonlinear and nonstationary nature of the data as well as subject-dependent variations. Graph signal processing (GSP) has shown promising results in the analysis of brain imaging data.</p><p><strong>Methods: </strong>In this article, a GSP-based approach is presented that exploits instantaneous amplitude and phase coupling between EEG time series to decode motor imagery (MI) tasks. A graph spectral representation of the Hilbert-transformed EEG signals is obtained, in which simultaneous diagonalization of covariance matrices provides the basis of a subspace that differentiates two classes of right hand and right foot MI tasks. To determine the most discriminative subspace, an exploratory analysis was conducted in the spectral domain of the graphs by ranking the graph frequency components using a feature selection method. The selected features are fed into a binary support vector machine that predicts the label of the test trials.</p><p><strong>Results: </strong>The performance of the proposed approach was evaluated on brain-computer interface competition III (IVa) dataset.</p><p><strong>Conclusions: </strong>Experimental results reflect that brain functional connectivity graphs derived using the instantaneous amplitude and phase of the EEG signals show comparable performance with the best results reported on these data in the literature, indicating the efficiency of the proposed method compared to the state-of-the-art methods.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"7"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graphs Constructed from Instantaneous Amplitude and Phase of Electroencephalogram Successfully Differentiate Motor Imagery Tasks.\",\"authors\":\"Maliheh Miri, Vahid Abootalebi, Hamid Saeedi-Sourck, Dimitri Van De Ville, Hamid Behjat\",\"doi\":\"10.4103/jmss.jmss_63_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate classification of electroencephalogram (EEG) signals is challenging given the nonlinear and nonstationary nature of the data as well as subject-dependent variations. Graph signal processing (GSP) has shown promising results in the analysis of brain imaging data.</p><p><strong>Methods: </strong>In this article, a GSP-based approach is presented that exploits instantaneous amplitude and phase coupling between EEG time series to decode motor imagery (MI) tasks. A graph spectral representation of the Hilbert-transformed EEG signals is obtained, in which simultaneous diagonalization of covariance matrices provides the basis of a subspace that differentiates two classes of right hand and right foot MI tasks. To determine the most discriminative subspace, an exploratory analysis was conducted in the spectral domain of the graphs by ranking the graph frequency components using a feature selection method. The selected features are fed into a binary support vector machine that predicts the label of the test trials.</p><p><strong>Results: </strong>The performance of the proposed approach was evaluated on brain-computer interface competition III (IVa) dataset.</p><p><strong>Conclusions: </strong>Experimental results reflect that brain functional connectivity graphs derived using the instantaneous amplitude and phase of the EEG signals show comparable performance with the best results reported on these data in the literature, indicating the efficiency of the proposed method compared to the state-of-the-art methods.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"15 \",\"pages\":\"7\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_63_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_63_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphs Constructed from Instantaneous Amplitude and Phase of Electroencephalogram Successfully Differentiate Motor Imagery Tasks.

Background: Accurate classification of electroencephalogram (EEG) signals is challenging given the nonlinear and nonstationary nature of the data as well as subject-dependent variations. Graph signal processing (GSP) has shown promising results in the analysis of brain imaging data.

Methods: In this article, a GSP-based approach is presented that exploits instantaneous amplitude and phase coupling between EEG time series to decode motor imagery (MI) tasks. A graph spectral representation of the Hilbert-transformed EEG signals is obtained, in which simultaneous diagonalization of covariance matrices provides the basis of a subspace that differentiates two classes of right hand and right foot MI tasks. To determine the most discriminative subspace, an exploratory analysis was conducted in the spectral domain of the graphs by ranking the graph frequency components using a feature selection method. The selected features are fed into a binary support vector machine that predicts the label of the test trials.

Results: The performance of the proposed approach was evaluated on brain-computer interface competition III (IVa) dataset.

Conclusions: Experimental results reflect that brain functional connectivity graphs derived using the instantaneous amplitude and phase of the EEG signals show comparable performance with the best results reported on these data in the literature, indicating the efficiency of the proposed method compared to the state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信