Maliheh Miri, Vahid Abootalebi, Hamid Saeedi-Sourck, Dimitri Van De Ville, Hamid Behjat
{"title":"根据脑电图的瞬时振幅和相位构建的图表能成功区分运动想象任务","authors":"Maliheh Miri, Vahid Abootalebi, Hamid Saeedi-Sourck, Dimitri Van De Ville, Hamid Behjat","doi":"10.4103/jmss.jmss_63_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate classification of electroencephalogram (EEG) signals is challenging given the nonlinear and nonstationary nature of the data as well as subject-dependent variations. Graph signal processing (GSP) has shown promising results in the analysis of brain imaging data.</p><p><strong>Methods: </strong>In this article, a GSP-based approach is presented that exploits instantaneous amplitude and phase coupling between EEG time series to decode motor imagery (MI) tasks. A graph spectral representation of the Hilbert-transformed EEG signals is obtained, in which simultaneous diagonalization of covariance matrices provides the basis of a subspace that differentiates two classes of right hand and right foot MI tasks. To determine the most discriminative subspace, an exploratory analysis was conducted in the spectral domain of the graphs by ranking the graph frequency components using a feature selection method. The selected features are fed into a binary support vector machine that predicts the label of the test trials.</p><p><strong>Results: </strong>The performance of the proposed approach was evaluated on brain-computer interface competition III (IVa) dataset.</p><p><strong>Conclusions: </strong>Experimental results reflect that brain functional connectivity graphs derived using the instantaneous amplitude and phase of the EEG signals show comparable performance with the best results reported on these data in the literature, indicating the efficiency of the proposed method compared to the state-of-the-art methods.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"7"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graphs Constructed from Instantaneous Amplitude and Phase of Electroencephalogram Successfully Differentiate Motor Imagery Tasks.\",\"authors\":\"Maliheh Miri, Vahid Abootalebi, Hamid Saeedi-Sourck, Dimitri Van De Ville, Hamid Behjat\",\"doi\":\"10.4103/jmss.jmss_63_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate classification of electroencephalogram (EEG) signals is challenging given the nonlinear and nonstationary nature of the data as well as subject-dependent variations. Graph signal processing (GSP) has shown promising results in the analysis of brain imaging data.</p><p><strong>Methods: </strong>In this article, a GSP-based approach is presented that exploits instantaneous amplitude and phase coupling between EEG time series to decode motor imagery (MI) tasks. A graph spectral representation of the Hilbert-transformed EEG signals is obtained, in which simultaneous diagonalization of covariance matrices provides the basis of a subspace that differentiates two classes of right hand and right foot MI tasks. To determine the most discriminative subspace, an exploratory analysis was conducted in the spectral domain of the graphs by ranking the graph frequency components using a feature selection method. The selected features are fed into a binary support vector machine that predicts the label of the test trials.</p><p><strong>Results: </strong>The performance of the proposed approach was evaluated on brain-computer interface competition III (IVa) dataset.</p><p><strong>Conclusions: </strong>Experimental results reflect that brain functional connectivity graphs derived using the instantaneous amplitude and phase of the EEG signals show comparable performance with the best results reported on these data in the literature, indicating the efficiency of the proposed method compared to the state-of-the-art methods.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"15 \",\"pages\":\"7\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_63_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_63_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Graphs Constructed from Instantaneous Amplitude and Phase of Electroencephalogram Successfully Differentiate Motor Imagery Tasks.
Background: Accurate classification of electroencephalogram (EEG) signals is challenging given the nonlinear and nonstationary nature of the data as well as subject-dependent variations. Graph signal processing (GSP) has shown promising results in the analysis of brain imaging data.
Methods: In this article, a GSP-based approach is presented that exploits instantaneous amplitude and phase coupling between EEG time series to decode motor imagery (MI) tasks. A graph spectral representation of the Hilbert-transformed EEG signals is obtained, in which simultaneous diagonalization of covariance matrices provides the basis of a subspace that differentiates two classes of right hand and right foot MI tasks. To determine the most discriminative subspace, an exploratory analysis was conducted in the spectral domain of the graphs by ranking the graph frequency components using a feature selection method. The selected features are fed into a binary support vector machine that predicts the label of the test trials.
Results: The performance of the proposed approach was evaluated on brain-computer interface competition III (IVa) dataset.
Conclusions: Experimental results reflect that brain functional connectivity graphs derived using the instantaneous amplitude and phase of the EEG signals show comparable performance with the best results reported on these data in the literature, indicating the efficiency of the proposed method compared to the state-of-the-art methods.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.