ERAP1活性调节免疫肽球,但也影响肿瘤细胞的蛋白质组、代谢和应激反应。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Molecular & Cellular Proteomics Pub Date : 2025-05-01 Epub Date: 2025-04-04 DOI:10.1016/j.mcpro.2025.100964
Martha Nikopaschou, Martina Samiotaki, Elli-Anna Stylianaki, Kamila Król, Paula Gragera, Aroosha Raja, Vassilis Aidinis, Angeliki Chroni, Doriana Fruci, George Panayotou, Efstratios Stratikos
{"title":"ERAP1活性调节免疫肽球,但也影响肿瘤细胞的蛋白质组、代谢和应激反应。","authors":"Martha Nikopaschou, Martina Samiotaki, Elli-Anna Stylianaki, Kamila Król, Paula Gragera, Aroosha Raja, Vassilis Aidinis, Angeliki Chroni, Doriana Fruci, George Panayotou, Efstratios Stratikos","doi":"10.1016/j.mcpro.2025.100964","DOIUrl":null,"url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) metabolizes peptides inside the ER and shapes the peptide repertoire available for binding to major histocompatibility complex class I molecules (MHC-I). However, it may have additional effects on cellular homeostasis, which have not been explored. To address these questions, we used both genetic silencing of ERAP1 expression as well as treatment with a selective allosteric ERAP1 inhibitor to probe changes in the immunopeptidome and proteome of the A375 melanoma cancer cell line. We observed significant immunopeptidome shifts with both methods of functional ERAP1 disruption, which were distinct for each method. Both methods of inhibition led to an enhancement, albeit slight, in tumor cell killing by stimulated human peripheral blood mononuclear cells and in significant proteomic alterations in pathways related to metabolism and cellular stress. Similar proteomic changes were also observed in the leukemia cell line THP-1. Biochemical analyses suggested that ERAP1 inhibition affected sensitivity to ER stress, reactive oxygen species production, and mitochondrial metabolism. Although the proteomics shifts were significant, their potential in shaping immunopeptidome shifts was limited since only 9.6% of differentially presented peptides belonged to proteins with altered expression and only 4.0% of proteins with altered expression were represented in the immunopeptidome shifts. Taken together, our findings suggest that modulation of ERAP1 activity can generate unique immunopeptidomes, mainly due to altered peptide processing in the ER, but also induce changes in the cellular proteome and metabolic state which may have further effects on tumor cells.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100964"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136889/pdf/","citationCount":"0","resultStr":"{\"title\":\"ERAP1 Activity Modulates the Immunopeptidome but Also Affects the Proteome, Metabolism, and Stress Responses in Cancer Cells.\",\"authors\":\"Martha Nikopaschou, Martina Samiotaki, Elli-Anna Stylianaki, Kamila Król, Paula Gragera, Aroosha Raja, Vassilis Aidinis, Angeliki Chroni, Doriana Fruci, George Panayotou, Efstratios Stratikos\",\"doi\":\"10.1016/j.mcpro.2025.100964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) metabolizes peptides inside the ER and shapes the peptide repertoire available for binding to major histocompatibility complex class I molecules (MHC-I). However, it may have additional effects on cellular homeostasis, which have not been explored. To address these questions, we used both genetic silencing of ERAP1 expression as well as treatment with a selective allosteric ERAP1 inhibitor to probe changes in the immunopeptidome and proteome of the A375 melanoma cancer cell line. We observed significant immunopeptidome shifts with both methods of functional ERAP1 disruption, which were distinct for each method. Both methods of inhibition led to an enhancement, albeit slight, in tumor cell killing by stimulated human peripheral blood mononuclear cells and in significant proteomic alterations in pathways related to metabolism and cellular stress. Similar proteomic changes were also observed in the leukemia cell line THP-1. Biochemical analyses suggested that ERAP1 inhibition affected sensitivity to ER stress, reactive oxygen species production, and mitochondrial metabolism. Although the proteomics shifts were significant, their potential in shaping immunopeptidome shifts was limited since only 9.6% of differentially presented peptides belonged to proteins with altered expression and only 4.0% of proteins with altered expression were represented in the immunopeptidome shifts. Taken together, our findings suggest that modulation of ERAP1 activity can generate unique immunopeptidomes, mainly due to altered peptide processing in the ER, but also induce changes in the cellular proteome and metabolic state which may have further effects on tumor cells.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100964\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136889/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2025.100964\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100964","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

内质网(ER)氨基肽酶1 (ERAP1)代谢内质网内的肽,并形成可与主要组织相容性复合体I类分子(MHC-I)结合的肽库。然而,它可能对细胞稳态有额外的影响,尚未被探索。为了解决这些问题,我们使用ERAP1表达的基因沉默和选择性变质ERAP1抑制剂治疗来探测A375黑色素瘤癌细胞系免疫肽和蛋白质组的变化。我们观察到,两种方法的ERAP1功能性破坏都有显著的免疫肽肽转移,每种方法都是不同的。两种抑制方法都导致了受刺激的人pbmc杀死肿瘤细胞的增强,以及代谢和细胞应激相关途径中显著的蛋白质组学改变,尽管只是轻微的增强。在白血病细胞系THP-1中也观察到类似的蛋白质组学变化。生化分析表明,ERAP1抑制影响了内质网应激的敏感性、活性氧的产生和线粒体代谢。尽管蛋白质组学的转变是显著的,但它们在形成免疫肽丘转变方面的潜力有限,因为只有9.6%的差异肽属于表达改变的蛋白质,而只有4.0%的表达改变的蛋白质在免疫肽丘转变中被代表。综上所述,我们的研究结果表明,ERAP1活性的调节可以产生独特的免疫肽组,主要是由于内质网中肽加工的改变,但也会诱导细胞蛋白质组和代谢状态的变化,这可能对肿瘤细胞有进一步的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ERAP1 Activity Modulates the Immunopeptidome but Also Affects the Proteome, Metabolism, and Stress Responses in Cancer Cells.

Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) metabolizes peptides inside the ER and shapes the peptide repertoire available for binding to major histocompatibility complex class I molecules (MHC-I). However, it may have additional effects on cellular homeostasis, which have not been explored. To address these questions, we used both genetic silencing of ERAP1 expression as well as treatment with a selective allosteric ERAP1 inhibitor to probe changes in the immunopeptidome and proteome of the A375 melanoma cancer cell line. We observed significant immunopeptidome shifts with both methods of functional ERAP1 disruption, which were distinct for each method. Both methods of inhibition led to an enhancement, albeit slight, in tumor cell killing by stimulated human peripheral blood mononuclear cells and in significant proteomic alterations in pathways related to metabolism and cellular stress. Similar proteomic changes were also observed in the leukemia cell line THP-1. Biochemical analyses suggested that ERAP1 inhibition affected sensitivity to ER stress, reactive oxygen species production, and mitochondrial metabolism. Although the proteomics shifts were significant, their potential in shaping immunopeptidome shifts was limited since only 9.6% of differentially presented peptides belonged to proteins with altered expression and only 4.0% of proteins with altered expression were represented in the immunopeptidome shifts. Taken together, our findings suggest that modulation of ERAP1 activity can generate unique immunopeptidomes, mainly due to altered peptide processing in the ER, but also induce changes in the cellular proteome and metabolic state which may have further effects on tumor cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信