Zhaohui Liang, Suresh Kanna Murugappan, Yuxuan Li, Man Nga Lai, Yajing Qi, Yi Wang, Ho Yin Edwin Chan, Marianne M Lee, Michael K Chan
{"title":"在rAAV-α-synuclein-A53T帕金森病小鼠模型中,sumo1衍生肽的基因传递可拯救神经元变性和运动缺陷。","authors":"Zhaohui Liang, Suresh Kanna Murugappan, Yuxuan Li, Man Nga Lai, Yajing Qi, Yi Wang, Ho Yin Edwin Chan, Marianne M Lee, Michael K Chan","doi":"10.1016/j.ymthe.2025.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>Developing α-synuclein aggregation inhibitors is challenging because its aggregation process involves several microscopic steps and heterogeneous intermediates. Previously, we identified a SUMO1-derived peptide, SUMO1(15-55), that exhibits tight binding to monomeric α-synuclein via SUMO-SUMO-interacting motif (SIM) interactions, and effectively blocks the initiation of aggregation and formation of toxic aggregates in vitro. In cellular and Drosophila models, SUMO1(15-55) was efficacious in protecting neuronal cells from α-synuclein-induced neurotoxicity and neuronal degeneration. Given the demonstrated ability of SUMO1(15-55) to sequester α-synuclein monomers thereby blocking oligomer formation, we sought to evaluate whether it could be equally effective against the aggregation-prone familial mutant α-synuclein-A53T. Herein, we show that SUMO1(15-55) selectively binds to monomeric α-synuclein-A53T, inhibits primary nucleation, and prevents the formation of structured protofibrils in vitro, thereby protecting neuronal cells from protofibril-induced cell death. We further demonstrate that larval feeding of a designed His<sub>10</sub>-SUMO1(15-55) that exhibits enhanced sub-stoichiometric suppression of α-synuclein-A53T aggregation in vitro can ameliorate Parkinson's disease (PD)-related symptoms in α-synuclein-A53T transgenic Drosophila models, while its rAAV-mediated gene delivery can relieve the PD-related histological and behavioral deficiencies in an rAAV-α-synuclein-A53T mouse PD model. Our findings suggest that gene delivery of His<sub>10</sub>-SUMO1(15-55) may serve as a clinical therapy for a spectrum of α-synuclein-aggregation associated synucleinopathies.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene delivery of SUMO1-derived peptide rescues neuronal degeneration and motor deficits in a mouse model of Parkinson's disease.\",\"authors\":\"Zhaohui Liang, Suresh Kanna Murugappan, Yuxuan Li, Man Nga Lai, Yajing Qi, Yi Wang, Ho Yin Edwin Chan, Marianne M Lee, Michael K Chan\",\"doi\":\"10.1016/j.ymthe.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing α-synuclein aggregation inhibitors is challenging because its aggregation process involves several microscopic steps and heterogeneous intermediates. Previously, we identified a SUMO1-derived peptide, SUMO1(15-55), that exhibits tight binding to monomeric α-synuclein via SUMO-SUMO-interacting motif (SIM) interactions, and effectively blocks the initiation of aggregation and formation of toxic aggregates in vitro. In cellular and Drosophila models, SUMO1(15-55) was efficacious in protecting neuronal cells from α-synuclein-induced neurotoxicity and neuronal degeneration. Given the demonstrated ability of SUMO1(15-55) to sequester α-synuclein monomers thereby blocking oligomer formation, we sought to evaluate whether it could be equally effective against the aggregation-prone familial mutant α-synuclein-A53T. Herein, we show that SUMO1(15-55) selectively binds to monomeric α-synuclein-A53T, inhibits primary nucleation, and prevents the formation of structured protofibrils in vitro, thereby protecting neuronal cells from protofibril-induced cell death. We further demonstrate that larval feeding of a designed His<sub>10</sub>-SUMO1(15-55) that exhibits enhanced sub-stoichiometric suppression of α-synuclein-A53T aggregation in vitro can ameliorate Parkinson's disease (PD)-related symptoms in α-synuclein-A53T transgenic Drosophila models, while its rAAV-mediated gene delivery can relieve the PD-related histological and behavioral deficiencies in an rAAV-α-synuclein-A53T mouse PD model. Our findings suggest that gene delivery of His<sub>10</sub>-SUMO1(15-55) may serve as a clinical therapy for a spectrum of α-synuclein-aggregation associated synucleinopathies.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.04.005\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.04.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Gene delivery of SUMO1-derived peptide rescues neuronal degeneration and motor deficits in a mouse model of Parkinson's disease.
Developing α-synuclein aggregation inhibitors is challenging because its aggregation process involves several microscopic steps and heterogeneous intermediates. Previously, we identified a SUMO1-derived peptide, SUMO1(15-55), that exhibits tight binding to monomeric α-synuclein via SUMO-SUMO-interacting motif (SIM) interactions, and effectively blocks the initiation of aggregation and formation of toxic aggregates in vitro. In cellular and Drosophila models, SUMO1(15-55) was efficacious in protecting neuronal cells from α-synuclein-induced neurotoxicity and neuronal degeneration. Given the demonstrated ability of SUMO1(15-55) to sequester α-synuclein monomers thereby blocking oligomer formation, we sought to evaluate whether it could be equally effective against the aggregation-prone familial mutant α-synuclein-A53T. Herein, we show that SUMO1(15-55) selectively binds to monomeric α-synuclein-A53T, inhibits primary nucleation, and prevents the formation of structured protofibrils in vitro, thereby protecting neuronal cells from protofibril-induced cell death. We further demonstrate that larval feeding of a designed His10-SUMO1(15-55) that exhibits enhanced sub-stoichiometric suppression of α-synuclein-A53T aggregation in vitro can ameliorate Parkinson's disease (PD)-related symptoms in α-synuclein-A53T transgenic Drosophila models, while its rAAV-mediated gene delivery can relieve the PD-related histological and behavioral deficiencies in an rAAV-α-synuclein-A53T mouse PD model. Our findings suggest that gene delivery of His10-SUMO1(15-55) may serve as a clinical therapy for a spectrum of α-synuclein-aggregation associated synucleinopathies.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.