Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith
{"title":"有限域上规定阶的阿贝尔变种","authors":"Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith","doi":"10.1007/s00208-024-03084-4","DOIUrl":null,"url":null,"abstract":"<p><p>Given a prime power <i>q</i> and <math><mrow><mi>n</mi> <mo>≫</mo> <mn>1</mn></mrow> </math> , we prove that every integer in a large subinterval of the Hasse-Weil interval <math><mrow><mo>[</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>]</mo></mrow> </math> is <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some ordinary geometrically simple principally polarized abelian variety <i>A</i> of dimension <i>n</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . As a consequence, we generalize a result of Howe and Kedlaya for <math><msub><mi>F</mi> <mn>2</mn></msub> </math> to show that for each prime power <i>q</i>, every sufficiently large positive integer is realizable, i.e., <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some abelian variety <i>A</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed <i>n</i>, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as <math><mrow><mi>q</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if <math><mrow><mi>q</mi> <mo>≤</mo> <mn>5</mn></mrow> </math> , then every positive integer is realizable, and for arbitrary <i>q</i>, every positive integer <math><mrow><mo>≥</mo> <msup><mi>q</mi> <mrow><mn>3</mn> <msqrt><mi>q</mi></msqrt> <mo>log</mo> <mi>q</mi></mrow> </msup> </mrow> </math> is realizable.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 1","pages":"1167-1202"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971235/pdf/","citationCount":"0","resultStr":"{\"title\":\"Abelian varieties of prescribed order over finite fields.\",\"authors\":\"Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith\",\"doi\":\"10.1007/s00208-024-03084-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given a prime power <i>q</i> and <math><mrow><mi>n</mi> <mo>≫</mo> <mn>1</mn></mrow> </math> , we prove that every integer in a large subinterval of the Hasse-Weil interval <math><mrow><mo>[</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>]</mo></mrow> </math> is <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some ordinary geometrically simple principally polarized abelian variety <i>A</i> of dimension <i>n</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . As a consequence, we generalize a result of Howe and Kedlaya for <math><msub><mi>F</mi> <mn>2</mn></msub> </math> to show that for each prime power <i>q</i>, every sufficiently large positive integer is realizable, i.e., <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some abelian variety <i>A</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed <i>n</i>, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as <math><mrow><mi>q</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if <math><mrow><mi>q</mi> <mo>≤</mo> <mn>5</mn></mrow> </math> , then every positive integer is realizable, and for arbitrary <i>q</i>, every positive integer <math><mrow><mo>≥</mo> <msup><mi>q</mi> <mrow><mn>3</mn> <msqrt><mi>q</mi></msqrt> <mo>log</mo> <mi>q</mi></mrow> </msup> </mrow> </math> is realizable.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"392 1\",\"pages\":\"1167-1202\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-03084-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-03084-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给出素数幂q和n < 1,证明了对于维数为n / F q的普通几何简单主极化阿贝尔变数a,在Hasse-Weil区间[(q - 1) 2n, (q + 1) 2n]的一大子区间中的每一个整数都是# a (F q)。因此,我们推广了Howe和Kedlaya关于f2的结果,表明对于每一个素数幂q,每一个足够大的正整数都是可实现的,即对于某个阿贝尔变量a / fq, # a (fq)是可实现的。我们的结果也改进了最著名的Hasse-Weil区间极值点计数的简单阿贝尔变数列的构造。一个单独的参数确定,对于固定n,由可实现整数组成的Hasse-Weil区间的最大子区间,渐近为q→∞;这给出了DiPippo和Howe 1998年定理的渐近最优改进。我们的方法是有效的:我们证明了当q≤5时,每个正整数都是可实现的,并且对于任意q,每个正整数≥q3q log q都是可实现的。
Abelian varieties of prescribed order over finite fields.
Given a prime power q and , we prove that every integer in a large subinterval of the Hasse-Weil interval is for some ordinary geometrically simple principally polarized abelian variety A of dimension n over . As a consequence, we generalize a result of Howe and Kedlaya for to show that for each prime power q, every sufficiently large positive integer is realizable, i.e., for some abelian variety A over . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed n, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if , then every positive integer is realizable, and for arbitrary q, every positive integer is realizable.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.