Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith
{"title":"有限域上规定阶的阿贝尔变种","authors":"Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith","doi":"10.1007/s00208-024-03084-4","DOIUrl":null,"url":null,"abstract":"<p><p>Given a prime power <i>q</i> and <math><mrow><mi>n</mi> <mo>≫</mo> <mn>1</mn></mrow> </math> , we prove that every integer in a large subinterval of the Hasse-Weil interval <math><mrow><mo>[</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>]</mo></mrow> </math> is <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some ordinary geometrically simple principally polarized abelian variety <i>A</i> of dimension <i>n</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . As a consequence, we generalize a result of Howe and Kedlaya for <math><msub><mi>F</mi> <mn>2</mn></msub> </math> to show that for each prime power <i>q</i>, every sufficiently large positive integer is realizable, i.e., <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some abelian variety <i>A</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed <i>n</i>, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as <math><mrow><mi>q</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if <math><mrow><mi>q</mi> <mo>≤</mo> <mn>5</mn></mrow> </math> , then every positive integer is realizable, and for arbitrary <i>q</i>, every positive integer <math><mrow><mo>≥</mo> <msup><mi>q</mi> <mrow><mn>3</mn> <msqrt><mi>q</mi></msqrt> <mo>log</mo> <mi>q</mi></mrow> </msup> </mrow> </math> is realizable.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 1","pages":"1167-1202"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971235/pdf/","citationCount":"0","resultStr":"{\"title\":\"Abelian varieties of prescribed order over finite fields.\",\"authors\":\"Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith\",\"doi\":\"10.1007/s00208-024-03084-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given a prime power <i>q</i> and <math><mrow><mi>n</mi> <mo>≫</mo> <mn>1</mn></mrow> </math> , we prove that every integer in a large subinterval of the Hasse-Weil interval <math><mrow><mo>[</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>]</mo></mrow> </math> is <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some ordinary geometrically simple principally polarized abelian variety <i>A</i> of dimension <i>n</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . As a consequence, we generalize a result of Howe and Kedlaya for <math><msub><mi>F</mi> <mn>2</mn></msub> </math> to show that for each prime power <i>q</i>, every sufficiently large positive integer is realizable, i.e., <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some abelian variety <i>A</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed <i>n</i>, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as <math><mrow><mi>q</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if <math><mrow><mi>q</mi> <mo>≤</mo> <mn>5</mn></mrow> </math> , then every positive integer is realizable, and for arbitrary <i>q</i>, every positive integer <math><mrow><mo>≥</mo> <msup><mi>q</mi> <mrow><mn>3</mn> <msqrt><mi>q</mi></msqrt> <mo>log</mo> <mi>q</mi></mrow> </msup> </mrow> </math> is realizable.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"392 1\",\"pages\":\"1167-1202\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-03084-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-03084-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abelian varieties of prescribed order over finite fields.
Given a prime power q and , we prove that every integer in a large subinterval of the Hasse-Weil interval is for some ordinary geometrically simple principally polarized abelian variety A of dimension n over . As a consequence, we generalize a result of Howe and Kedlaya for to show that for each prime power q, every sufficiently large positive integer is realizable, i.e., for some abelian variety A over . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed n, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if , then every positive integer is realizable, and for arbitrary q, every positive integer is realizable.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.