有限域上规定阶的阿贝尔变种

IF 1.3 2区 数学 Q1 MATHEMATICS
Mathematische Annalen Pub Date : 2025-01-01 Epub Date: 2025-03-06 DOI:10.1007/s00208-024-03084-4
Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith
{"title":"有限域上规定阶的阿贝尔变种","authors":"Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith","doi":"10.1007/s00208-024-03084-4","DOIUrl":null,"url":null,"abstract":"<p><p>Given a prime power <i>q</i> and <math><mrow><mi>n</mi> <mo>≫</mo> <mn>1</mn></mrow> </math> , we prove that every integer in a large subinterval of the Hasse-Weil interval <math><mrow><mo>[</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>]</mo></mrow> </math> is <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some ordinary geometrically simple principally polarized abelian variety <i>A</i> of dimension <i>n</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . As a consequence, we generalize a result of Howe and Kedlaya for <math><msub><mi>F</mi> <mn>2</mn></msub> </math> to show that for each prime power <i>q</i>, every sufficiently large positive integer is realizable, i.e., <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some abelian variety <i>A</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed <i>n</i>, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as <math><mrow><mi>q</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if <math><mrow><mi>q</mi> <mo>≤</mo> <mn>5</mn></mrow> </math> , then every positive integer is realizable, and for arbitrary <i>q</i>, every positive integer <math><mrow><mo>≥</mo> <msup><mi>q</mi> <mrow><mn>3</mn> <msqrt><mi>q</mi></msqrt> <mo>log</mo> <mi>q</mi></mrow> </msup> </mrow> </math> is realizable.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 1","pages":"1167-1202"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971235/pdf/","citationCount":"0","resultStr":"{\"title\":\"Abelian varieties of prescribed order over finite fields.\",\"authors\":\"Raymond van Bommel, Edgar Costa, Wanlin Li, Bjorn Poonen, Alexander Smith\",\"doi\":\"10.1007/s00208-024-03084-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given a prime power <i>q</i> and <math><mrow><mi>n</mi> <mo>≫</mo> <mn>1</mn></mrow> </math> , we prove that every integer in a large subinterval of the Hasse-Weil interval <math><mrow><mo>[</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>,</mo> <msup><mrow><mo>(</mo> <msqrt><mi>q</mi></msqrt> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mn>2</mn> <mi>n</mi></mrow> </msup> <mo>]</mo></mrow> </math> is <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some ordinary geometrically simple principally polarized abelian variety <i>A</i> of dimension <i>n</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . As a consequence, we generalize a result of Howe and Kedlaya for <math><msub><mi>F</mi> <mn>2</mn></msub> </math> to show that for each prime power <i>q</i>, every sufficiently large positive integer is realizable, i.e., <math><mrow><mo>#</mo> <mi>A</mi> <mo>(</mo> <msub><mi>F</mi> <mi>q</mi></msub> <mo>)</mo></mrow> </math> for some abelian variety <i>A</i> over <math><msub><mi>F</mi> <mi>q</mi></msub> </math> . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed <i>n</i>, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as <math><mrow><mi>q</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if <math><mrow><mi>q</mi> <mo>≤</mo> <mn>5</mn></mrow> </math> , then every positive integer is realizable, and for arbitrary <i>q</i>, every positive integer <math><mrow><mo>≥</mo> <msup><mi>q</mi> <mrow><mn>3</mn> <msqrt><mi>q</mi></msqrt> <mo>log</mo> <mi>q</mi></mrow> </msup> </mrow> </math> is realizable.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"392 1\",\"pages\":\"1167-1202\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-03084-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-03084-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian varieties of prescribed order over finite fields.

Given a prime power q and n 1 , we prove that every integer in a large subinterval of the Hasse-Weil interval [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is # A ( F q ) for some ordinary geometrically simple principally polarized abelian variety A of dimension n over F q . As a consequence, we generalize a result of Howe and Kedlaya for F 2 to show that for each prime power q, every sufficiently large positive integer is realizable, i.e., # A ( F q ) for some abelian variety A over F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed n, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as q ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if q 5 , then every positive integer is realizable, and for arbitrary q, every positive integer q 3 q log q is realizable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信