低剂量和超低剂量下变压器增强2048矩阵CT成像中基于幻象的图像质量评价。

IF 2.1 4区 医学
Qingyao Li, Ling Liu, Yaping Zhang, Lu Zhang, Lingyun Wang, Zhijie Pan, Min Xu, Shuai Zhang, Xueqian Xie
{"title":"低剂量和超低剂量下变压器增强2048矩阵CT成像中基于幻象的图像质量评价。","authors":"Qingyao Li, Ling Liu, Yaping Zhang, Lu Zhang, Lingyun Wang, Zhijie Pan, Min Xu, Shuai Zhang, Xueqian Xie","doi":"10.1007/s11604-025-01755-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare the quality of standard 512-matrix, standard 1024-matrix, and Swin2SR-based 2048-matrix phantom images under different scanning protocols.</p><p><strong>Materials and methods: </strong>The Catphan 600 phantom was scanned using a multidetector CT scanner under two protocols: 120 kV/100 mA (CT dose index volume = 3.4 mGy) to simulate low-dose CT, and 70 kV/40 mA (0.27 mGy) to simulate ultralow-dose CT. Raw data were reconstructed into standard 512-matrix images using three methods: filtered back projection (FBP), adaptive statistical iterative reconstruction at 40% intensity (ASIR-V), and deep learning image reconstruction at high intensity (DLIR-H). The Swin2SR super-resolution model was used to generate 2048-matrix images (Swin2SR-2048), while the super-resolution convolutional neural network (SRCNN) model generated 2048-matrix images (SRCNN-2048). The quality of 2048-matrix images generated by the two models (Swin2SR and SRCNN) was compared. Image quality was evaluated by ImQuest software (v7.2.0.0, Duke University) based on line pair clarity, task-based transfer function (TTF), image noise, and noise power spectrum (NPS).</p><p><strong>Results: </strong>At equivalent radiation doses and reconstruction method, Swin2SR-2048 images identified more line pairs than both standard-512 and standard-1024 images. Except for the 0.27 mGy/DLIR-H/standard kernel sequence, TTF-50% of Teflon increased after super-resolution processing. Statistically significant differences in TTF-50% were observed between the standard 512, 1024, and Swin2SR-2048 images (all p < 0.05). Swin2SR-2048 images exhibited lower image noise and NPS<sub>peak</sub> compared to both standard 512- and 1024-matrix images, with significant differences observed in all three matrix types (all p < 0.05). Swin2SR-2048 images also demonstrated superior quality compared to SRCNN-2048, with significant differences in image noise (p < 0.001), NPS<sub>peak</sub> (p < 0.05), and TTF-50% for Teflon (p < 0.05).</p><p><strong>Conclusion: </strong>Transformer-enhanced 2048-matrix CT images improve spatial resolution and reduce image noise compared to standard-512 and -1024 matrix images.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phantom-based evaluation of image quality in Transformer-enhanced 2048-matrix CT imaging at low and ultralow doses.\",\"authors\":\"Qingyao Li, Ling Liu, Yaping Zhang, Lu Zhang, Lingyun Wang, Zhijie Pan, Min Xu, Shuai Zhang, Xueqian Xie\",\"doi\":\"10.1007/s11604-025-01755-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To compare the quality of standard 512-matrix, standard 1024-matrix, and Swin2SR-based 2048-matrix phantom images under different scanning protocols.</p><p><strong>Materials and methods: </strong>The Catphan 600 phantom was scanned using a multidetector CT scanner under two protocols: 120 kV/100 mA (CT dose index volume = 3.4 mGy) to simulate low-dose CT, and 70 kV/40 mA (0.27 mGy) to simulate ultralow-dose CT. Raw data were reconstructed into standard 512-matrix images using three methods: filtered back projection (FBP), adaptive statistical iterative reconstruction at 40% intensity (ASIR-V), and deep learning image reconstruction at high intensity (DLIR-H). The Swin2SR super-resolution model was used to generate 2048-matrix images (Swin2SR-2048), while the super-resolution convolutional neural network (SRCNN) model generated 2048-matrix images (SRCNN-2048). The quality of 2048-matrix images generated by the two models (Swin2SR and SRCNN) was compared. Image quality was evaluated by ImQuest software (v7.2.0.0, Duke University) based on line pair clarity, task-based transfer function (TTF), image noise, and noise power spectrum (NPS).</p><p><strong>Results: </strong>At equivalent radiation doses and reconstruction method, Swin2SR-2048 images identified more line pairs than both standard-512 and standard-1024 images. Except for the 0.27 mGy/DLIR-H/standard kernel sequence, TTF-50% of Teflon increased after super-resolution processing. Statistically significant differences in TTF-50% were observed between the standard 512, 1024, and Swin2SR-2048 images (all p < 0.05). Swin2SR-2048 images exhibited lower image noise and NPS<sub>peak</sub> compared to both standard 512- and 1024-matrix images, with significant differences observed in all three matrix types (all p < 0.05). Swin2SR-2048 images also demonstrated superior quality compared to SRCNN-2048, with significant differences in image noise (p < 0.001), NPS<sub>peak</sub> (p < 0.05), and TTF-50% for Teflon (p < 0.05).</p><p><strong>Conclusion: </strong>Transformer-enhanced 2048-matrix CT images improve spatial resolution and reduce image noise compared to standard-512 and -1024 matrix images.</p>\",\"PeriodicalId\":14691,\"journal\":{\"name\":\"Japanese Journal of Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11604-025-01755-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01755-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:比较不同扫描协议下标准512矩阵、标准1024矩阵和基于swin2sr的2048矩阵幻象图像的质量。材料和方法:使用多探测器CT扫描仪扫描Catphan 600幻影,在120 kV/100 mA (CT剂量指数体积= 3.4 mGy)和70 kV/40 mA (0.27 mGy)两种方案下模拟低剂量CT和超低剂量CT。采用滤波反投影(FBP)、40%强度自适应统计迭代重建(ASIR-V)和高强度深度学习图像重建(DLIR-H)三种方法将原始数据重建为标准512矩阵图像。采用Swin2SR超分辨率模型生成2048矩阵的图像(Swin2SR-2048),采用超分辨率卷积神经网络(SRCNN)模型生成2048矩阵的图像(SRCNN-2048)。比较了两种模型(Swin2SR和SRCNN)生成的2048矩阵图像的质量。通过ImQuest软件(v7.2.0.0, Duke University)基于线对清晰度、基于任务的传递函数(TTF)、图像噪声和噪声功率谱(NPS)对图像质量进行评估。结果:在相同的辐射剂量和重建方法下,Swin2SR-2048图像比标准512和标准1024图像识别出更多的线对。除0.27 mGy/DLIR-H/标准核序列外,超分辨率处理后Teflon的TTF-50%均增加。与标准512、1024和1024矩阵图像相比,标准512、1024和sw2sr -2048图像的TTF-50%差异具有统计学意义(p峰均高于标准512和1024矩阵图像),三种矩阵类型的TTF-50%差异均具有统计学意义(p峰均高于标准1024矩阵图像)。结论:与标准512和1024矩阵图像相比,变压器增强的2048矩阵CT图像提高了空间分辨率,降低了图像噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phantom-based evaluation of image quality in Transformer-enhanced 2048-matrix CT imaging at low and ultralow doses.

Purpose: To compare the quality of standard 512-matrix, standard 1024-matrix, and Swin2SR-based 2048-matrix phantom images under different scanning protocols.

Materials and methods: The Catphan 600 phantom was scanned using a multidetector CT scanner under two protocols: 120 kV/100 mA (CT dose index volume = 3.4 mGy) to simulate low-dose CT, and 70 kV/40 mA (0.27 mGy) to simulate ultralow-dose CT. Raw data were reconstructed into standard 512-matrix images using three methods: filtered back projection (FBP), adaptive statistical iterative reconstruction at 40% intensity (ASIR-V), and deep learning image reconstruction at high intensity (DLIR-H). The Swin2SR super-resolution model was used to generate 2048-matrix images (Swin2SR-2048), while the super-resolution convolutional neural network (SRCNN) model generated 2048-matrix images (SRCNN-2048). The quality of 2048-matrix images generated by the two models (Swin2SR and SRCNN) was compared. Image quality was evaluated by ImQuest software (v7.2.0.0, Duke University) based on line pair clarity, task-based transfer function (TTF), image noise, and noise power spectrum (NPS).

Results: At equivalent radiation doses and reconstruction method, Swin2SR-2048 images identified more line pairs than both standard-512 and standard-1024 images. Except for the 0.27 mGy/DLIR-H/standard kernel sequence, TTF-50% of Teflon increased after super-resolution processing. Statistically significant differences in TTF-50% were observed between the standard 512, 1024, and Swin2SR-2048 images (all p < 0.05). Swin2SR-2048 images exhibited lower image noise and NPSpeak compared to both standard 512- and 1024-matrix images, with significant differences observed in all three matrix types (all p < 0.05). Swin2SR-2048 images also demonstrated superior quality compared to SRCNN-2048, with significant differences in image noise (p < 0.001), NPSpeak (p < 0.05), and TTF-50% for Teflon (p < 0.05).

Conclusion: Transformer-enhanced 2048-matrix CT images improve spatial resolution and reduce image noise compared to standard-512 and -1024 matrix images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Japanese Journal of Radiology
Japanese Journal of Radiology Medicine-Radiology, Nuclear Medicine and Imaging
自引率
4.80%
发文量
133
期刊介绍: Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信