Lanyue Zhang, Jiangnan Zhao, Chunyu Su, Jianxi Wu, Lai Jiang, Hao Chi, Qin Wang
{"title":"卵巢癌的类器官模型:解决代谢重编程和耐药性的免疫机制。","authors":"Lanyue Zhang, Jiangnan Zhao, Chunyu Su, Jianxi Wu, Lai Jiang, Hao Chi, Qin Wang","doi":"10.3389/fimmu.2025.1573686","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming is a hallmark of ovarian cancer, enabling tumor progression, immune evasion and drug resistance. The tumor microenvironment (TME) further shapes metabolic adaptations, enabling cancer cells to withstand hypoxia and nutrient deprivation. While organoid models provide a physiologically relevant platform for studying these processes, they still lack immune and vascular components, limiting their ability to fully recapitulate tumor metabolism and drug responses. In this study, we investigated the key metabolic mechanisms involved in ovarian cancer progression, focusing on glycolysis, lipid metabolism and amino acid metabolism. We integrated metabolomic analyses and drug sensitivity assays to explore metabolic-TME interactions using patient-derived, adult stem cell-derived and iPSC-derived organ tissues. Among these, we found that glycolysis, lipid metabolism and amino acid metabolism play a central role in tumor progression and chemotherapy resistance. We identified methylglyoxal (MGO)-mediated BRCA2 dysfunction as a driver of immune escape, a role for sphingolipid signaling in tumor proliferation and a role for kynurenine metabolism in CD8+ T cell suppression. In addition, PI3K/AKT/mTOR and Wnt/β-catenin pathways promote chemoresistance through metabolic adaptation. By elucidating the link between metabolic reprogramming and immune evasion, this study identifies key metabolic vulnerabilities and potential drug targets in ovarian cancer. Our findings support the development of metabolically targeted therapies and increase the utility of organoid-based precision medicine models.</p>","PeriodicalId":12622,"journal":{"name":"Frontiers in Immunology","volume":"16 ","pages":"1573686"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968360/pdf/","citationCount":"0","resultStr":"{\"title\":\"Organoid models of ovarian cancer: resolving immune mechanisms of metabolic reprogramming and drug resistance.\",\"authors\":\"Lanyue Zhang, Jiangnan Zhao, Chunyu Su, Jianxi Wu, Lai Jiang, Hao Chi, Qin Wang\",\"doi\":\"10.3389/fimmu.2025.1573686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic reprogramming is a hallmark of ovarian cancer, enabling tumor progression, immune evasion and drug resistance. The tumor microenvironment (TME) further shapes metabolic adaptations, enabling cancer cells to withstand hypoxia and nutrient deprivation. While organoid models provide a physiologically relevant platform for studying these processes, they still lack immune and vascular components, limiting their ability to fully recapitulate tumor metabolism and drug responses. In this study, we investigated the key metabolic mechanisms involved in ovarian cancer progression, focusing on glycolysis, lipid metabolism and amino acid metabolism. We integrated metabolomic analyses and drug sensitivity assays to explore metabolic-TME interactions using patient-derived, adult stem cell-derived and iPSC-derived organ tissues. Among these, we found that glycolysis, lipid metabolism and amino acid metabolism play a central role in tumor progression and chemotherapy resistance. We identified methylglyoxal (MGO)-mediated BRCA2 dysfunction as a driver of immune escape, a role for sphingolipid signaling in tumor proliferation and a role for kynurenine metabolism in CD8+ T cell suppression. In addition, PI3K/AKT/mTOR and Wnt/β-catenin pathways promote chemoresistance through metabolic adaptation. By elucidating the link between metabolic reprogramming and immune evasion, this study identifies key metabolic vulnerabilities and potential drug targets in ovarian cancer. Our findings support the development of metabolically targeted therapies and increase the utility of organoid-based precision medicine models.</p>\",\"PeriodicalId\":12622,\"journal\":{\"name\":\"Frontiers in Immunology\",\"volume\":\"16 \",\"pages\":\"1573686\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fimmu.2025.1573686\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2025.1573686","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Organoid models of ovarian cancer: resolving immune mechanisms of metabolic reprogramming and drug resistance.
Metabolic reprogramming is a hallmark of ovarian cancer, enabling tumor progression, immune evasion and drug resistance. The tumor microenvironment (TME) further shapes metabolic adaptations, enabling cancer cells to withstand hypoxia and nutrient deprivation. While organoid models provide a physiologically relevant platform for studying these processes, they still lack immune and vascular components, limiting their ability to fully recapitulate tumor metabolism and drug responses. In this study, we investigated the key metabolic mechanisms involved in ovarian cancer progression, focusing on glycolysis, lipid metabolism and amino acid metabolism. We integrated metabolomic analyses and drug sensitivity assays to explore metabolic-TME interactions using patient-derived, adult stem cell-derived and iPSC-derived organ tissues. Among these, we found that glycolysis, lipid metabolism and amino acid metabolism play a central role in tumor progression and chemotherapy resistance. We identified methylglyoxal (MGO)-mediated BRCA2 dysfunction as a driver of immune escape, a role for sphingolipid signaling in tumor proliferation and a role for kynurenine metabolism in CD8+ T cell suppression. In addition, PI3K/AKT/mTOR and Wnt/β-catenin pathways promote chemoresistance through metabolic adaptation. By elucidating the link between metabolic reprogramming and immune evasion, this study identifies key metabolic vulnerabilities and potential drug targets in ovarian cancer. Our findings support the development of metabolically targeted therapies and increase the utility of organoid-based precision medicine models.
期刊介绍:
Frontiers in Immunology is a leading journal in its field, publishing rigorously peer-reviewed research across basic, translational and clinical immunology. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Immunology is the official Journal of the International Union of Immunological Societies (IUIS). Encompassing the entire field of Immunology, this journal welcomes papers that investigate basic mechanisms of immune system development and function, with a particular emphasis given to the description of the clinical and immunological phenotype of human immune disorders, and on the definition of their molecular basis.