Priscilla Cristine de Oliveira Mineiro , Vanderlei da Silva Fraga-Junior , Aline de Oliveira Pontes Cardoso , Christopher Mark Waters , Christina Maeda Takiya , Cláudia Farias Benjamim , Helber da Maia Valenca , Manuella Lanzetti , J.A. Moraes , S.S. Valenca
{"title":"selonsertib抑制ASK1可减轻小鼠弹性酶诱导的肺气肿。","authors":"Priscilla Cristine de Oliveira Mineiro , Vanderlei da Silva Fraga-Junior , Aline de Oliveira Pontes Cardoso , Christopher Mark Waters , Christina Maeda Takiya , Cláudia Farias Benjamim , Helber da Maia Valenca , Manuella Lanzetti , J.A. Moraes , S.S. Valenca","doi":"10.1016/j.lfs.2025.123600","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, with its most severe form being pulmonary emphysema, for which no effective treatment currently exists. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in lung inflammation and injury. Here, we investigated the experimental treatment of elastase-induced emphysema in mice with selonsertib, an ASK1 inhibitor. Animals received intratracheal elastase and were subsequently treated with intranasal selonsertib at different doses. On day 21, bronchoalveolar lavage fluid and lung tissues were collected for histological and biochemical analyses. Results showed that elastase-instilled mice developed pulmonary emphysema, whereas treatment with selonsertib at a dose of 2 mg/kg significantly reduced mean alveolar diameter. Moreover, higher doses of selonsertib were effective in reducing inflammatory cytokines (CX3CL1, IL-6, CCL2, and IL-1β), reactive oxygen species, and apoptosis. These findings suggest that ASK1 plays a critical role in the development of elastase-induced emphysema in mice and could be a target for COPD treatment.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"372 ","pages":"Article 123600"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASK1 inhibition by selonsertib attenuates elastase-induced emphysema in mice\",\"authors\":\"Priscilla Cristine de Oliveira Mineiro , Vanderlei da Silva Fraga-Junior , Aline de Oliveira Pontes Cardoso , Christopher Mark Waters , Christina Maeda Takiya , Cláudia Farias Benjamim , Helber da Maia Valenca , Manuella Lanzetti , J.A. Moraes , S.S. Valenca\",\"doi\":\"10.1016/j.lfs.2025.123600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, with its most severe form being pulmonary emphysema, for which no effective treatment currently exists. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in lung inflammation and injury. Here, we investigated the experimental treatment of elastase-induced emphysema in mice with selonsertib, an ASK1 inhibitor. Animals received intratracheal elastase and were subsequently treated with intranasal selonsertib at different doses. On day 21, bronchoalveolar lavage fluid and lung tissues were collected for histological and biochemical analyses. Results showed that elastase-instilled mice developed pulmonary emphysema, whereas treatment with selonsertib at a dose of 2 mg/kg significantly reduced mean alveolar diameter. Moreover, higher doses of selonsertib were effective in reducing inflammatory cytokines (CX3CL1, IL-6, CCL2, and IL-1β), reactive oxygen species, and apoptosis. These findings suggest that ASK1 plays a critical role in the development of elastase-induced emphysema in mice and could be a target for COPD treatment.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"372 \",\"pages\":\"Article 123600\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320525002346\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525002346","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
ASK1 inhibition by selonsertib attenuates elastase-induced emphysema in mice
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, with its most severe form being pulmonary emphysema, for which no effective treatment currently exists. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in lung inflammation and injury. Here, we investigated the experimental treatment of elastase-induced emphysema in mice with selonsertib, an ASK1 inhibitor. Animals received intratracheal elastase and were subsequently treated with intranasal selonsertib at different doses. On day 21, bronchoalveolar lavage fluid and lung tissues were collected for histological and biochemical analyses. Results showed that elastase-instilled mice developed pulmonary emphysema, whereas treatment with selonsertib at a dose of 2 mg/kg significantly reduced mean alveolar diameter. Moreover, higher doses of selonsertib were effective in reducing inflammatory cytokines (CX3CL1, IL-6, CCL2, and IL-1β), reactive oxygen species, and apoptosis. These findings suggest that ASK1 plays a critical role in the development of elastase-induced emphysema in mice and could be a target for COPD treatment.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.