一种新的头颈部鳞状细胞癌分子分类系统:通过多组学分析预测治疗反应和转移潜力。

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
XinYu Liu, YuJun Liu, XuTengYue Tian, Yue Xi, MiaoMiao Lu, Xin Zou, WanTao Chen
{"title":"一种新的头颈部鳞状细胞癌分子分类系统:通过多组学分析预测治疗反应和转移潜力。","authors":"XinYu Liu, YuJun Liu, XuTengYue Tian, Yue Xi, MiaoMiao Lu, Xin Zou, WanTao Chen","doi":"10.1007/s12672-025-02257-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Head and neck squamous cell carcinoma (HNSCC) demonstrates significant heterogeneity, necessitating improved molecular classification for precision treatment.</p><p><strong>Methods: </strong>We integrated single-cell and bulk RNA sequencing data from 59,376 cells across ten datasets using Scissor and scSTAR packages. Molecular subtyping was performed through ssGSEA and WGCNA analysis, with immune infiltration evaluated using CIBERSORT. We developed a machine learning-based risk prediction model using 54 algorithms.</p><p><strong>Results: </strong>We identified three molecular subtypes with distinct prognostic implications, showing significant survival differences across independent datasets (TCGA-HNSCC, P < 0.0001; GSE65858, P = 0.018). The C3 subtype showed enhanced immunotherapy response potential, while C2 exhibited the highest genomic alteration rate (97.06%) and TP53 mutations (80%). Macrophages emerged as key players in intercellular communication networks. Our risk prediction model demonstrated robust performance across four validation cohorts.</p><p><strong>Conclusion: </strong>This molecular subtyping framework provides valuable insights for patient stratification and personalized therapeutic strategies in HNSCC, potentially improving clinical outcomes through precise treatment selection.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"477"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel molecular classification system for head and neck squamous cell carcinoma: predicting treatment response and metastatic potential through multi-omics analysis.\",\"authors\":\"XinYu Liu, YuJun Liu, XuTengYue Tian, Yue Xi, MiaoMiao Lu, Xin Zou, WanTao Chen\",\"doi\":\"10.1007/s12672-025-02257-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Head and neck squamous cell carcinoma (HNSCC) demonstrates significant heterogeneity, necessitating improved molecular classification for precision treatment.</p><p><strong>Methods: </strong>We integrated single-cell and bulk RNA sequencing data from 59,376 cells across ten datasets using Scissor and scSTAR packages. Molecular subtyping was performed through ssGSEA and WGCNA analysis, with immune infiltration evaluated using CIBERSORT. We developed a machine learning-based risk prediction model using 54 algorithms.</p><p><strong>Results: </strong>We identified three molecular subtypes with distinct prognostic implications, showing significant survival differences across independent datasets (TCGA-HNSCC, P < 0.0001; GSE65858, P = 0.018). The C3 subtype showed enhanced immunotherapy response potential, while C2 exhibited the highest genomic alteration rate (97.06%) and TP53 mutations (80%). Macrophages emerged as key players in intercellular communication networks. Our risk prediction model demonstrated robust performance across four validation cohorts.</p><p><strong>Conclusion: </strong>This molecular subtyping framework provides valuable insights for patient stratification and personalized therapeutic strategies in HNSCC, potentially improving clinical outcomes through precise treatment selection.</p>\",\"PeriodicalId\":11148,\"journal\":{\"name\":\"Discover. Oncology\",\"volume\":\"16 1\",\"pages\":\"477\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover. Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-025-02257-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02257-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:头颈部鳞状细胞癌(HNSCC)具有明显的异质性,需要改进分子分类以进行精确治疗。方法:我们使用Scissor和scSTAR封装整合了来自10个数据集的59,376个细胞的单细胞和大细胞RNA测序数据。通过ssGSEA和WGCNA分析进行分子分型,使用CIBERSORT评估免疫浸润。我们开发了一个基于机器学习的风险预测模型,使用54种算法。结果:我们确定了三种具有不同预后意义的分子亚型,在独立数据集中显示出显著的生存差异(TCGA-HNSCC, P)。结论:这种分子亚型框架为HNSCC患者分层和个性化治疗策略提供了有价值的见解,可能通过精确的治疗选择改善临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel molecular classification system for head and neck squamous cell carcinoma: predicting treatment response and metastatic potential through multi-omics analysis.

Background: Head and neck squamous cell carcinoma (HNSCC) demonstrates significant heterogeneity, necessitating improved molecular classification for precision treatment.

Methods: We integrated single-cell and bulk RNA sequencing data from 59,376 cells across ten datasets using Scissor and scSTAR packages. Molecular subtyping was performed through ssGSEA and WGCNA analysis, with immune infiltration evaluated using CIBERSORT. We developed a machine learning-based risk prediction model using 54 algorithms.

Results: We identified three molecular subtypes with distinct prognostic implications, showing significant survival differences across independent datasets (TCGA-HNSCC, P < 0.0001; GSE65858, P = 0.018). The C3 subtype showed enhanced immunotherapy response potential, while C2 exhibited the highest genomic alteration rate (97.06%) and TP53 mutations (80%). Macrophages emerged as key players in intercellular communication networks. Our risk prediction model demonstrated robust performance across four validation cohorts.

Conclusion: This molecular subtyping framework provides valuable insights for patient stratification and personalized therapeutic strategies in HNSCC, potentially improving clinical outcomes through precise treatment selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信