Anuj Ojha , Shu-Jun Zhao , Basil Akpunonu , Jian-Ting Zhang , Kerri A. Simo , Jing-Yuan Liu
{"title":"Gap-App: A sex-distinct AI-based predictor for pancreatic ductal adenocarcinoma survival as a web application open to patients and physicians","authors":"Anuj Ojha , Shu-Jun Zhao , Basil Akpunonu , Jian-Ting Zhang , Kerri A. Simo , Jing-Yuan Liu","doi":"10.1016/j.canlet.2025.217689","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, using RNA-Seq gene expression data and advanced machine learning techniques, we identified distinct gene expression profiles between male and female pancreatic ductal adenocarcinoma (PDAC) patients. Building on this insight, we developed sex-specific 3-year survival predictive models alongside a single comprehensive model. Despite smaller sample sizes, the sex-specific models outperformed the general model. We further refined our models by selecting the most important features from the initial models. The refined sex-specific predictive models achieved higher accuracy and consistently outperformed the refined comprehensive model, highlighting the value of sex-specific analysis. To ensure robustness, all refined sex-specific models were calibrated and then evaluated using an independent dataset. Random Forest models emerged as the most effective predictors, achieving accuracies of 90.33 % for males and 90.40 % for females on the training dataset, and 81.25 % for males and 89.47 % for females on the independent test dataset. These top-performing models were integrated into Gap-App, a web application that leverages individual gene expression profiles and sex information for personalized survival predictions. As the first online tool bridging complex genomic data with clinical application, Gap-App facilitates more precise, individualized cancer care, marking a significant step in personalized prognosis prediction. This study underscores the importance of incorporating sex differences in predictive modeling and sets the stage for the shift from traditional one-size-fits-all to more personalized and targeted medicine. The Gap-App service is freely available for patients and clinicians at <span><span>www.gap-app.org</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"622 ","pages":"Article 217689"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525002551","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Gap-App: A sex-distinct AI-based predictor for pancreatic ductal adenocarcinoma survival as a web application open to patients and physicians
In this study, using RNA-Seq gene expression data and advanced machine learning techniques, we identified distinct gene expression profiles between male and female pancreatic ductal adenocarcinoma (PDAC) patients. Building on this insight, we developed sex-specific 3-year survival predictive models alongside a single comprehensive model. Despite smaller sample sizes, the sex-specific models outperformed the general model. We further refined our models by selecting the most important features from the initial models. The refined sex-specific predictive models achieved higher accuracy and consistently outperformed the refined comprehensive model, highlighting the value of sex-specific analysis. To ensure robustness, all refined sex-specific models were calibrated and then evaluated using an independent dataset. Random Forest models emerged as the most effective predictors, achieving accuracies of 90.33 % for males and 90.40 % for females on the training dataset, and 81.25 % for males and 89.47 % for females on the independent test dataset. These top-performing models were integrated into Gap-App, a web application that leverages individual gene expression profiles and sex information for personalized survival predictions. As the first online tool bridging complex genomic data with clinical application, Gap-App facilitates more precise, individualized cancer care, marking a significant step in personalized prognosis prediction. This study underscores the importance of incorporating sex differences in predictive modeling and sets the stage for the shift from traditional one-size-fits-all to more personalized and targeted medicine. The Gap-App service is freely available for patients and clinicians at www.gap-app.org.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.