{"title":"恶性疟原虫P113的一个未知结构域的晶体结构。","authors":"Zhudi Yuan, Xiaofang Huang, Lianglei Wang, Zhijie Yin, Xianghui Fu, Shiqian Qi, Dan Tang","doi":"10.1107/S2059798325002748","DOIUrl":null,"url":null,"abstract":"<p><p>The surface protein P113 serves as a membrane-anchored protein that tethers the Plasmodium falciparum RH5 complex, including its associated partners CyRPA and RIPR, to the parasite surface. This anchoring mechanism ensures the proper localization and stabilization of RH5, facilitating its critical interaction with the host erythrocyte receptor basigin during erythrocyte invasion. Here, the helical-rich domain of P113 (residues 311-679) from a Plasmodium species was expressed, purified and crystallized to elucidate its structural and functional characteristics. The recombinant protein, with a molecular weight of approximately 44 kDa, was confirmed to be monomeric in solution. Crystallization in 0.5 mM MES pH 6.0, 22% PEG 3350 yielded high-quality crystals, enabling the determination of the structure of the apo form at 1.7 Å resolution. The structure revealed a predominant α-helical composition, with two distinct left-handed orthogonal four-helix bundles formed by helices α1-α4 and α6-α9 connected by a disordered region. Sequence analysis demonstrated high conservation of P113 across all human-infecting Plasmodium species, including P. vivax, P. malariae, P. falciparum and P. ovale, as well as in Plasmodium species infecting primates and rodents. Protein-protein interaction analysis using the STRING tool identified P113 as a hub protein that interacts with ten proteins, including small nuclear ribonucleoprotein, DNA polymerase delta small subunit and RIPR, which is part of the RH5-CyRPA-RIPR complex. AlphaFold predictions further elucidated the interaction patterns, revealing moderate to strong interaction scores (0.39-0.74) with key partners. Notably, the helical-rich domain of P113 was identified as the critical binding region for PF3D7_0308000, with key interaction sites mapped to residues Asp475, Arg381, Lys386, Asn390, Asp392 and Lys533. These findings provide critical insights into the structural and functional roles of P113 and its interaction network, advancing our understanding of its molecular mechanisms in Plasmodium biology.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"212-222"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The crystal structure of an uncharacterized domain of P113 from Plasmodium falciparum.\",\"authors\":\"Zhudi Yuan, Xiaofang Huang, Lianglei Wang, Zhijie Yin, Xianghui Fu, Shiqian Qi, Dan Tang\",\"doi\":\"10.1107/S2059798325002748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The surface protein P113 serves as a membrane-anchored protein that tethers the Plasmodium falciparum RH5 complex, including its associated partners CyRPA and RIPR, to the parasite surface. This anchoring mechanism ensures the proper localization and stabilization of RH5, facilitating its critical interaction with the host erythrocyte receptor basigin during erythrocyte invasion. Here, the helical-rich domain of P113 (residues 311-679) from a Plasmodium species was expressed, purified and crystallized to elucidate its structural and functional characteristics. The recombinant protein, with a molecular weight of approximately 44 kDa, was confirmed to be monomeric in solution. Crystallization in 0.5 mM MES pH 6.0, 22% PEG 3350 yielded high-quality crystals, enabling the determination of the structure of the apo form at 1.7 Å resolution. The structure revealed a predominant α-helical composition, with two distinct left-handed orthogonal four-helix bundles formed by helices α1-α4 and α6-α9 connected by a disordered region. Sequence analysis demonstrated high conservation of P113 across all human-infecting Plasmodium species, including P. vivax, P. malariae, P. falciparum and P. ovale, as well as in Plasmodium species infecting primates and rodents. Protein-protein interaction analysis using the STRING tool identified P113 as a hub protein that interacts with ten proteins, including small nuclear ribonucleoprotein, DNA polymerase delta small subunit and RIPR, which is part of the RH5-CyRPA-RIPR complex. AlphaFold predictions further elucidated the interaction patterns, revealing moderate to strong interaction scores (0.39-0.74) with key partners. Notably, the helical-rich domain of P113 was identified as the critical binding region for PF3D7_0308000, with key interaction sites mapped to residues Asp475, Arg381, Lys386, Asn390, Asp392 and Lys533. These findings provide critical insights into the structural and functional roles of P113 and its interaction network, advancing our understanding of its molecular mechanisms in Plasmodium biology.</p>\",\"PeriodicalId\":7116,\"journal\":{\"name\":\"Acta Crystallographica. Section D, Structural Biology\",\"volume\":\" \",\"pages\":\"212-222\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica. Section D, Structural Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2059798325002748\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325002748","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The crystal structure of an uncharacterized domain of P113 from Plasmodium falciparum.
The surface protein P113 serves as a membrane-anchored protein that tethers the Plasmodium falciparum RH5 complex, including its associated partners CyRPA and RIPR, to the parasite surface. This anchoring mechanism ensures the proper localization and stabilization of RH5, facilitating its critical interaction with the host erythrocyte receptor basigin during erythrocyte invasion. Here, the helical-rich domain of P113 (residues 311-679) from a Plasmodium species was expressed, purified and crystallized to elucidate its structural and functional characteristics. The recombinant protein, with a molecular weight of approximately 44 kDa, was confirmed to be monomeric in solution. Crystallization in 0.5 mM MES pH 6.0, 22% PEG 3350 yielded high-quality crystals, enabling the determination of the structure of the apo form at 1.7 Å resolution. The structure revealed a predominant α-helical composition, with two distinct left-handed orthogonal four-helix bundles formed by helices α1-α4 and α6-α9 connected by a disordered region. Sequence analysis demonstrated high conservation of P113 across all human-infecting Plasmodium species, including P. vivax, P. malariae, P. falciparum and P. ovale, as well as in Plasmodium species infecting primates and rodents. Protein-protein interaction analysis using the STRING tool identified P113 as a hub protein that interacts with ten proteins, including small nuclear ribonucleoprotein, DNA polymerase delta small subunit and RIPR, which is part of the RH5-CyRPA-RIPR complex. AlphaFold predictions further elucidated the interaction patterns, revealing moderate to strong interaction scores (0.39-0.74) with key partners. Notably, the helical-rich domain of P113 was identified as the critical binding region for PF3D7_0308000, with key interaction sites mapped to residues Asp475, Arg381, Lys386, Asn390, Asp392 and Lys533. These findings provide critical insights into the structural and functional roles of P113 and its interaction network, advancing our understanding of its molecular mechanisms in Plasmodium biology.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.