单频和超快激光的相干转换

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jiaqi Zhou, Yatan Xiong, Zhi Cheng, Xinru Cao, Yan Feng
{"title":"单频和超快激光的相干转换","authors":"Jiaqi Zhou,&nbsp;Yatan Xiong,&nbsp;Zhi Cheng,&nbsp;Xinru Cao,&nbsp;Yan Feng","doi":"10.1002/andp.202400198","DOIUrl":null,"url":null,"abstract":"<p>Lasers with high spectral coherence are in high demand for applications requiring high precision. Single frequency (SF) and ultrafast lasers represent two types of highly coherent light sources, each with distinct time-frequency characteristics. The advent of novel technologies based on electro-optics and nonlinear optics has bridged the gap between these two types of lasers, enabling coherent conversion between them. This review examines several technologies that enable coherent conversion between SF and ultrafast lasers. The generation of ultrafast pulses by modulation of an SF laser, covering both electro-optic modulation (EOM) and optic-optic modulation (OOM) is discussed. With respect to Kerr soliton generation by SF laser-induced parametric frequency conversion, schemes with and without resonator structure are compared and discussed. The extraction of a single comb line from an ultrafast laser using stimulated Brillouin scattering is also presented. The advent of new technologies using all-polarization-maintaining fiber structures has made fiber Brillouin amplification a practical and robust solution for single comb line extraction. These coherent lasers with customizable time and frequency characteristics are poised to become essential building blocks in future photonic technologies.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherent Conversion Between Single-Frequency and Ultrafast Lasers\",\"authors\":\"Jiaqi Zhou,&nbsp;Yatan Xiong,&nbsp;Zhi Cheng,&nbsp;Xinru Cao,&nbsp;Yan Feng\",\"doi\":\"10.1002/andp.202400198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lasers with high spectral coherence are in high demand for applications requiring high precision. Single frequency (SF) and ultrafast lasers represent two types of highly coherent light sources, each with distinct time-frequency characteristics. The advent of novel technologies based on electro-optics and nonlinear optics has bridged the gap between these two types of lasers, enabling coherent conversion between them. This review examines several technologies that enable coherent conversion between SF and ultrafast lasers. The generation of ultrafast pulses by modulation of an SF laser, covering both electro-optic modulation (EOM) and optic-optic modulation (OOM) is discussed. With respect to Kerr soliton generation by SF laser-induced parametric frequency conversion, schemes with and without resonator structure are compared and discussed. The extraction of a single comb line from an ultrafast laser using stimulated Brillouin scattering is also presented. The advent of new technologies using all-polarization-maintaining fiber structures has made fiber Brillouin amplification a practical and robust solution for single comb line extraction. These coherent lasers with customizable time and frequency characteristics are poised to become essential building blocks in future photonic technologies.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400198\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400198","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有高光谱相干性的激光器在要求高精度的应用中有很高的需求。单频(SF)和超快激光器代表两种类型的高相干光源,每一种都具有不同的时频特性。基于电光学和非线性光学的新技术的出现弥补了这两种激光器之间的差距,使它们之间的相干转换成为可能。本文综述了几种实现SF和超快激光器之间相干转换的技术。讨论了SF激光调制超快脉冲的产生,包括电光调制和光调制。针对SF激光诱导参数变频产生克尔孤子的问题,对有谐振腔结构和无谐振腔结构的方案进行了比较和讨论。本文还介绍了利用受激布里渊散射从超快激光中提取单个梳线的方法。采用全保偏光纤结构的新技术的出现,使得光纤布里渊放大成为一种实用的、可靠的单梳线提取解决方案。这些具有可定制时间和频率特性的相干激光器将成为未来光子技术的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherent Conversion Between Single-Frequency and Ultrafast Lasers

Lasers with high spectral coherence are in high demand for applications requiring high precision. Single frequency (SF) and ultrafast lasers represent two types of highly coherent light sources, each with distinct time-frequency characteristics. The advent of novel technologies based on electro-optics and nonlinear optics has bridged the gap between these two types of lasers, enabling coherent conversion between them. This review examines several technologies that enable coherent conversion between SF and ultrafast lasers. The generation of ultrafast pulses by modulation of an SF laser, covering both electro-optic modulation (EOM) and optic-optic modulation (OOM) is discussed. With respect to Kerr soliton generation by SF laser-induced parametric frequency conversion, schemes with and without resonator structure are compared and discussed. The extraction of a single comb line from an ultrafast laser using stimulated Brillouin scattering is also presented. The advent of new technologies using all-polarization-maintaining fiber structures has made fiber Brillouin amplification a practical and robust solution for single comb line extraction. These coherent lasers with customizable time and frequency characteristics are poised to become essential building blocks in future photonic technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信