基于实时多模态融合的低光环境下增强目标检测

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Yuhong Wu, Jinkai Cui, Kuoye Niu, Yanlong Lu, Lijun Cheng, Shengze Cai, Chao Xu
{"title":"基于实时多模态融合的低光环境下增强目标检测","authors":"Yuhong Wu,&nbsp;Jinkai Cui,&nbsp;Kuoye Niu,&nbsp;Yanlong Lu,&nbsp;Lijun Cheng,&nbsp;Shengze Cai,&nbsp;Chao Xu","doi":"10.1049/csy2.70011","DOIUrl":null,"url":null,"abstract":"<p>Accurate target detection in low-light environments is crucial for unmanned aerial vehicles (UAVs) and autonomous driving applications. In this study, the authors introduce a real-time multimodal fusion for enhanced detection (RMF-ED), a novel framework designed to overcome the limitations of low-light target detection. By leveraging the complementary capabilities of near-infrared (NIR) cameras and light detection and ranging (LiDAR) sensors, RMF-ED enhances detection performance. An advanced NIR generative adversarial network (NIR-GAN) model was developed to address the lack of annotated NIR datasets, integrating structural similarity index measure (SSIM) loss and L1 loss functions. This approach enables the generation of high-quality NIR images from RGB datasets, bridging a critical gap in training data. Furthermore, the multimodal fusion algorithm integrates RGB images, NIR images, and LiDAR point clouds, ensuring consistency and accuracy in proposal fusion. Experimental results on the KITTI dataset demonstrate that RMF-ED achieves performance comparable to or exceeding state-of-the-art fusion algorithms, with a computational time of only 21 ms. These features make RMF-ED an efficient and versatile solution for real-time applications in low-light environments.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70011","citationCount":"0","resultStr":"{\"title\":\"RMF-ED: Real-Time Multimodal Fusion for Enhanced Target Detection in Low-Light Environments\",\"authors\":\"Yuhong Wu,&nbsp;Jinkai Cui,&nbsp;Kuoye Niu,&nbsp;Yanlong Lu,&nbsp;Lijun Cheng,&nbsp;Shengze Cai,&nbsp;Chao Xu\",\"doi\":\"10.1049/csy2.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate target detection in low-light environments is crucial for unmanned aerial vehicles (UAVs) and autonomous driving applications. In this study, the authors introduce a real-time multimodal fusion for enhanced detection (RMF-ED), a novel framework designed to overcome the limitations of low-light target detection. By leveraging the complementary capabilities of near-infrared (NIR) cameras and light detection and ranging (LiDAR) sensors, RMF-ED enhances detection performance. An advanced NIR generative adversarial network (NIR-GAN) model was developed to address the lack of annotated NIR datasets, integrating structural similarity index measure (SSIM) loss and L1 loss functions. This approach enables the generation of high-quality NIR images from RGB datasets, bridging a critical gap in training data. Furthermore, the multimodal fusion algorithm integrates RGB images, NIR images, and LiDAR point clouds, ensuring consistency and accuracy in proposal fusion. Experimental results on the KITTI dataset demonstrate that RMF-ED achieves performance comparable to or exceeding state-of-the-art fusion algorithms, with a computational time of only 21 ms. These features make RMF-ED an efficient and versatile solution for real-time applications in low-light environments.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

低光环境下的精确目标检测对于无人机和自动驾驶应用至关重要。在这项研究中,作者引入了一种实时多模态融合增强检测(RMF-ED),这是一种旨在克服弱光目标检测局限性的新框架。通过利用近红外(NIR)相机和光探测和测距(LiDAR)传感器的互补功能,RMF-ED增强了探测性能。开发了一种先进的NIR生成对抗网络(NIR- gan)模型,通过集成结构相似指数测量(SSIM)损失和L1损失函数来解决缺乏注释的NIR数据集的问题。这种方法能够从RGB数据集生成高质量的近红外图像,弥合了训练数据的关键差距。此外,多模态融合算法将RGB图像、近红外图像和LiDAR点云融合在一起,保证了提案融合的一致性和准确性。在KITTI数据集上的实验结果表明,RMF-ED达到了与最先进的融合算法相当或超过的性能,计算时间仅为21 ms。这些特性使RMF-ED成为低光环境下实时应用的高效通用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RMF-ED: Real-Time Multimodal Fusion for Enhanced Target Detection in Low-Light Environments

RMF-ED: Real-Time Multimodal Fusion for Enhanced Target Detection in Low-Light Environments

Accurate target detection in low-light environments is crucial for unmanned aerial vehicles (UAVs) and autonomous driving applications. In this study, the authors introduce a real-time multimodal fusion for enhanced detection (RMF-ED), a novel framework designed to overcome the limitations of low-light target detection. By leveraging the complementary capabilities of near-infrared (NIR) cameras and light detection and ranging (LiDAR) sensors, RMF-ED enhances detection performance. An advanced NIR generative adversarial network (NIR-GAN) model was developed to address the lack of annotated NIR datasets, integrating structural similarity index measure (SSIM) loss and L1 loss functions. This approach enables the generation of high-quality NIR images from RGB datasets, bridging a critical gap in training data. Furthermore, the multimodal fusion algorithm integrates RGB images, NIR images, and LiDAR point clouds, ensuring consistency and accuracy in proposal fusion. Experimental results on the KITTI dataset demonstrate that RMF-ED achieves performance comparable to or exceeding state-of-the-art fusion algorithms, with a computational time of only 21 ms. These features make RMF-ED an efficient and versatile solution for real-time applications in low-light environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信