应用于 VS 和 MD 技术的深度学习初学者方法

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Stijn D’Hondt, José Oramas, Hans De Winter
{"title":"应用于 VS 和 MD 技术的深度学习初学者方法","authors":"Stijn D’Hondt,&nbsp;José Oramas,&nbsp;Hans De Winter","doi":"10.1186/s13321-025-00985-7","DOIUrl":null,"url":null,"abstract":"<div><p>It has become impossible to imagine the fields of biochemistry and medicinal chemistry without computational chemistry and molecular modelling techniques. In many steps of the drug development process in silico methods have become indispensable. Virtual screening (VS) can tremendously expedite the early discovery phase, whilst the use of molecular dynamics (MD) simulations forms a powerful additional tool to in vitro methods throughout the entire drug discovery process. In the field of biochemistry, MD has also become a compelling method for studying biophysical systems (e.g., protein folding) complementary to experimental techniques. However, both VS and MD come with their own limitations and methodological difficulties, from hardware limitations to restrictions in algorithmic capabilities. One solution to overcoming these difficulties lies in the field of machine learning (ML), and more specifically deep learning (DL). There are many ways in which DL can be applied to these molecular modelling techniques to achieve more accurate results in a more efficient manner or expedite the data analysis of the acquired results. Despite steadily increasing interest in DL amidst computational chemists, knowledge is still limited and scattered over different resources. This review is aimed at computational chemists with knowledge of molecular modelling, who wish to possibly integrate DL approaches in their research and already have a basic understanding of the fundamentals of DL. This review focusses on a survey of recent applications of DL in molecular modelling techniques. The different sections are logically subdivided, based on where DL is integrated in the research: (1) for the improvement of VS workflows, (2) for the improvement of certain workflows in MD simulations, (3) for aiding in the calculations of interatomic forces, or (4) for data analysis of MD trajectories. It will become clear that DL has the capacity to completely transform the way molecular modelling is carried out.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00985-7","citationCount":"0","resultStr":"{\"title\":\"A beginner’s approach to deep learning applied to VS and MD techniques\",\"authors\":\"Stijn D’Hondt,&nbsp;José Oramas,&nbsp;Hans De Winter\",\"doi\":\"10.1186/s13321-025-00985-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has become impossible to imagine the fields of biochemistry and medicinal chemistry without computational chemistry and molecular modelling techniques. In many steps of the drug development process in silico methods have become indispensable. Virtual screening (VS) can tremendously expedite the early discovery phase, whilst the use of molecular dynamics (MD) simulations forms a powerful additional tool to in vitro methods throughout the entire drug discovery process. In the field of biochemistry, MD has also become a compelling method for studying biophysical systems (e.g., protein folding) complementary to experimental techniques. However, both VS and MD come with their own limitations and methodological difficulties, from hardware limitations to restrictions in algorithmic capabilities. One solution to overcoming these difficulties lies in the field of machine learning (ML), and more specifically deep learning (DL). There are many ways in which DL can be applied to these molecular modelling techniques to achieve more accurate results in a more efficient manner or expedite the data analysis of the acquired results. Despite steadily increasing interest in DL amidst computational chemists, knowledge is still limited and scattered over different resources. This review is aimed at computational chemists with knowledge of molecular modelling, who wish to possibly integrate DL approaches in their research and already have a basic understanding of the fundamentals of DL. This review focusses on a survey of recent applications of DL in molecular modelling techniques. The different sections are logically subdivided, based on where DL is integrated in the research: (1) for the improvement of VS workflows, (2) for the improvement of certain workflows in MD simulations, (3) for aiding in the calculations of interatomic forces, or (4) for data analysis of MD trajectories. It will become clear that DL has the capacity to completely transform the way molecular modelling is carried out.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00985-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-00985-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00985-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果没有计算化学和分子模拟技术,生物化学和药物化学领域是无法想象的。在药物开发过程的许多步骤中,计算机方法已成为不可或缺的。虚拟筛选(VS)可以极大地加快早期发现阶段,而分子动力学(MD)模拟的使用在整个药物发现过程中形成了体外方法的强大附加工具。在生物化学领域,MD也成为研究生物物理系统(如蛋白质折叠)的一种令人信服的方法,与实验技术相辅相成。然而,VS和MD都有自己的局限性和方法上的困难,从硬件限制到算法能力的限制。克服这些困难的一个解决方案在于机器学习(ML)领域,更具体地说是深度学习(DL)。有许多方法可以将深度学习应用于这些分子建模技术,以更有效的方式获得更准确的结果或加快对所获得结果的数据分析。尽管计算化学家对深度学习的兴趣稳步增长,但知识仍然有限,分散在不同的资源上。这篇综述是针对具有分子建模知识的计算化学家,他们希望在他们的研究中可能整合DL方法,并且已经对DL的基本原理有了基本的了解。本文综述了DL在分子建模技术中的最新应用。不同的部分在逻辑上细分,基于DL在研究中的集成:(1)改进VS工作流程,(2)改进MD模拟中的某些工作流程,(3)帮助计算原子间力,或(4)MD轨迹的数据分析。很明显,DL有能力完全改变分子建模的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A beginner’s approach to deep learning applied to VS and MD techniques

It has become impossible to imagine the fields of biochemistry and medicinal chemistry without computational chemistry and molecular modelling techniques. In many steps of the drug development process in silico methods have become indispensable. Virtual screening (VS) can tremendously expedite the early discovery phase, whilst the use of molecular dynamics (MD) simulations forms a powerful additional tool to in vitro methods throughout the entire drug discovery process. In the field of biochemistry, MD has also become a compelling method for studying biophysical systems (e.g., protein folding) complementary to experimental techniques. However, both VS and MD come with their own limitations and methodological difficulties, from hardware limitations to restrictions in algorithmic capabilities. One solution to overcoming these difficulties lies in the field of machine learning (ML), and more specifically deep learning (DL). There are many ways in which DL can be applied to these molecular modelling techniques to achieve more accurate results in a more efficient manner or expedite the data analysis of the acquired results. Despite steadily increasing interest in DL amidst computational chemists, knowledge is still limited and scattered over different resources. This review is aimed at computational chemists with knowledge of molecular modelling, who wish to possibly integrate DL approaches in their research and already have a basic understanding of the fundamentals of DL. This review focusses on a survey of recent applications of DL in molecular modelling techniques. The different sections are logically subdivided, based on where DL is integrated in the research: (1) for the improvement of VS workflows, (2) for the improvement of certain workflows in MD simulations, (3) for aiding in the calculations of interatomic forces, or (4) for data analysis of MD trajectories. It will become clear that DL has the capacity to completely transform the way molecular modelling is carried out.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信